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SECTION 1
INTRODUCTION

The general objective of this program is to develop the technology necessary
to apply digital flight control techniques to the three-axis, multiple flight
control configuration demands of advanced fighter aircraft, Specifically, the
: techniques and requirements of digital flight control systems are to be estab-
1 lished, and a simulation employing a proven airborne digital computer is to
be used to validate these requirements,

! ! The Interim Report consists of three volumes as follows:

‘ VOLUME I -- DIGITAL FLIGHT CONTROL SYSTEMS ANALYSIS

3 VOLUME II == DOCUMENTATION OF DIGITAI. CONTROI.
i i ANALYSIS PROGRAMS (DIGIKON)

VOLUME III -- DIGITAL FLIGHT CONTROL SYSTEM
: DESIGN CONSIDERATIONS

This document reports the analytical developments on the Digital Flight
Control Systems Analysis which pertain to the specific objective of defining
computational requirements for a tactical fighter and determining its per-
formance sensitivity to digital flight control system (DFCS) parameters,

o
- . a s

it i

Section II presents the analysis approach. The stability and performance

analysis program is briefly reviewed. Subsequently, for background infor-
mation, the process of generating complete digital control laws is given, ;
and a parametric study of the F-4 longitudinal system is described. 1

In Section III the technique for mathematical modeling of the computer- ]
controlled system in state space is presented. This is an automated process :
which has been applied to multivariable, multirate systems, Effects of
computational delays are included.

Modeling of performance in state space is described in Section IV, Five
performance measures are considered: (1) poles-zeros, (2) frequency _
response, (3) RMS response to turbulence and roundoff noise, (4) power- :
content analysis, and (5) time response.

The computer programs which implement the mathematical analyses and
models presented in this volume are documented in Volume II.

Some of the analytical developments reported in Volume I have not been
incorporated into the existing software due to lack of resources.

A demonstration example is given in Section V to illustrate how these pro-
grams are used and how the computational requirements are derived.




In Volume III, Digital Flight Control System Design Considerations, the
requirements for converting a general digital flight control system to actual
hardware and software are addressed. Topics such as sizing rules, input/
output information flow, multiplexing, redundancy and self-test techniques
and electromagnetic interference requirements are discussed. The results
include guidelines to aid in the estimation of the complexity of the actual hard-
ware design for both dedicated and general-purpose processor configurations.

In additon, Volume III considers the impact of DFCS design requirements of
two practical design applications. The first of these concerns the integration
of outer-loop flight control modes with inner-loop functions. The second
considers the implementation of multimode control functions. A primary
investigation in the second application involved switching strategies to mini-

mize transients when changing modes.

The Final Report, AFFDL-TR-74-69, documents the work done in a continua-
tion of this study on digital flight control requirements. This effort involved
validation of the analysis techniques and applicable design considerations des-
cribed in this report. The validation was accomplished through a parameter
variation analysis on the F-4 longitudinal axis using the analysis tools of
Volumes [ and II, and through a simulation test program using a digital
airborne computer containing -4 control functions. A condensation of the
analysis and design requirements documented in the three rolumes of this
report is also included in the final report.
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SECTION II ;
ANALYSIS APPROACH 3

] This section presents the overview of Honeywell's work on the definition
., of the digital flight control system (DFCS) computational requirements for a
1 tactical fighter type of aircraft,

Of specific interest is the sensitivity ot aircraft performance criteria to vari-
ations in the computational parameters. The approach used was first to
generate a comprehensive DFCS stability and performance analysis computer
program, and subsequently to apply this analysis tool to a detailed parametric
study to obtain computational requirements,

The stability and performance analysis program is briefly presented first,
This program is fully documented in AFFDL-TR-73-119 Volume II. Genera- [
tion of control laws (synethesis) is summarized next, This is followed by a !
summary of computational requirements and parametric study. :

- The computational requirements for the F-4 longitudinal control system are
. determined by carrying out a detailed parametric study in two levels of system '
1 complexity, First, the F-4 longitudinal structural filter is considered. Subse-

' quently, the overall F-4 longitudinal control system is studied. The results {
4 are presented in that order, !

Finally, a summary of requirements for digital computation of control laws 1
are given for systems with bandwidths of 6, 12, 20, and 25 Hz. Future growth ]
of control configured vehicles require these broad bandwidths.

STABILITY AND PERFORMANCE ANALYSIS PROGRAM ]

A computer program (DIGIKON) was generated to facilitate a quantitative
analysis of all parameters which affect performance and/or stability., Per-
formance includes control and disturbance covariance response, transient
and frequency response. Stability includes eigenvalues and gain and phase
margins, The parameters include sample rate, word length, computational
delays, multisample rates, control filters/laws, aircraft bandwidth, noise,
and gusts, The DIGIKON computer program is being used as a tool to develop
specifically the DFCS computation rate and control law word length require-
ments, This application is shown diagramatically in Figure 1,
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Figure 1. DIGIKON Software Program for Sample Rate/Word

[.ength Determination
The DIGIKON analysis program (l‘igure 2) development consisted of two main
subtasks. In the first subtask, system modeling software was developed.
This software can handle a general class of digital flight control systems in
one of two ways. I'irst, it can construct a set of digital controllers by digi-
tizing an existing continuous-controller design for various sets of multi-
sample rates. Second, it can accept y-domain controller descriptions,
The capability of gencrating a geneeal diserete system model not only develops
numbers for o spectfic tactical fighter aystem configuration, but also factli-
intes in the study of future configurations. 'This capability also aids in the
denign of digital control systems, which is outside the scope of this study.

Where specific data is required in this work, the 1'-4 configured as in the
680.] Survivable I'light Control System (Reference 7) is used as the

tactical fighter representation. The aircraft model includes a rigid body
and three flexure states, actuator and sensor dynamics, and the controller.
The discrete controller model variables include sample rate, word length,
and computational delay.
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The development of performance analysis software formed the second part
of th.e Analysis Program task. Subroutines to compute stability and per-
formance for the discrete system model were developed,  The stability
nicasures are cigenvalues (5, 7 and W planes), gain margin, and phase
margin. The performance measures are covariance response to wind gustis
and random pilot commands, frequency response, power-content analysis,
and transient time responses to normal and rapid control inputs and distur-
bances. The software uses algorithms based on state-space theory. Each
subsystem is characterized by the four matrices (quadruple) (A, B, C, D) for
the continuous system and (F, G, H, E) for the digital system. This format
facilitates treatment of large-scale system problems., Equations (7), (8),
(47), and (48) illustrate the form of how the matrices are used to character=-
ize a subsystem.

CONTROL LAW GENERATION (SYNTHESIS)

The computational requirements are greatly influenced by the control require-
ments, The control requirements basically generate t}i2 control laws,
Obviously, the two are coupled together (Figure 3),

To determine and validate the computational requirements, one must develop
mathematical models for system dynamics and performance analysis, [n
addition, the control laws should be parameterized with resgpect to computa-
tional parameters (sample-time, word-length and computational delays) to
facilitate the DFCS design. In the following, the DFCS design procedures are
briefly presented. Conventional control laws ace designed by first evaluating
the free system performance, and then by determining system gains and com-
pensators to shape behavior of the system to meet the control requirements,
Figure 4 shows this cycle for interactive continuous (analog) controller designs.

The design of digital control laws follows the same pattern (Figure 5), How-
ever, more options are available, One starting point is a good continuous
control law, This can be transformed into a digital control law by either
z-transform or Tustin transform. Another approach is a z-plane root locus
design, The free system pole-zeros are mapped and the gains and compensator
poles-zeros determined to shape the root locus, The third approach is called
z-w plane design (Figure 6). In this approach, the w-transform of the discrete
plant model is developed first, Then the w-plane compensators are determined
to shape the frequency response to meet control requirements, Finally, the
w-plane compensators are transformed back to the z-plane to obtain difference
equations for the digital cont>ol,

Digitization Versus Direct Digital Design

Following are the advantages of digitization and direct digital design procedures.
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Advantages of Digitization --

e The requirement starts out with a flyable, continuous controller, Con-
tinuous controller provides a strong base for exhibiting effects of the

sample time parameter on performance, since it corresponds to the
limiting case (i.e,, T = 0),

e Controller-digitization algorithms are selected from amcng those which
provide good frequency response and maintains the structural and the
stability properties of the controller dynamics invariant with respect
to the sample time parameter, This one-to-one correspondence between
continuous controller dynamics (i.e,, lead-lag networks) and the soft -
ware dynamics (i.e,, corresponding difference equations) provides a

good starting point in practical digital controller design for a given
sample rate,

e The coefficients of the digitized-controller matrices can be computed
efficiently as a function of sample time,

e Sample rate estimates based on this model are on the safe side, and the
resulting digital control software is flyable,

e Computational requirements based on digitization can be computed
rapidly, In many cases, sharper estimates based on direct digital
synthesis methods or digital controller optimizations are not justified
for the initial requirement definitions because of the uncertainties in the
system parameters,

Advantages of Direct Digital Design --

e W-plane transfer function of the free plant takes into account the delay
introduced by the hold unit at the plant input,

e Compensator design with free parameters allows the designer to meet
the control specifications with less stringent computer requirements,

An example is given (see page 116) for comparison of direct digital versus
digitization synthesis using Tustin algorithm with no prewarping.

COMPUTATIONAL REQUIREMENTS AND PARAMETRIC STUDY ‘

This task includes performing a comprehensive study of digital flight control :
parameters, Aircraft flight condition, system bandwidth, sample-rate, word
length are to be varied, and relative influence on performance is to be examined, 3
The objective here is to define computation rate requirements for a tactical
fighter and its sensitivity to DFCS parameters.

10 :




The F-4 longitudinal control system presented in the fly-by-wire report
AFFDL-TR-71-20, Supplement 2, was selected for the parametric study.
First, the F-4 longitudinal structural filter was investigated. Subsequently,
the overall F-4 longitudinal control system (open loop and closed loop) was
studied. In the following these studies are summarized in that order,

PAREAMETRIC STUDY OF "STRUCTURAL FILTER'" IN F-4 LONGITUDINAL
CONTROL SYSTEM

Parametric analysis by software was carried out to relate the poles and
zeros, the frequency response and the rms power response of a structural
filfer to the computational parameters: sample time and the coefricient word
length, The structural filter in the F-5 longitudinal control system was
selected for this investigation. For the parametric study of poles and zeros
and frequency response, the following parameter set was used:

Sample Time: 0, 1/1000, 1/160, 1/80, 1/40, 1/20 sec.
Coefficient Word Length: 24, 16, 12, 8 bits

For parametric study of rms power response, a first-order prefilter was
used with two bandwidths; namely, 200 and 0.2 rad/sec.

PARAMETRIC STUDY OF F-4 LONGITUDINAL CONTROL SYSTEM

The F=4 longitudinal model (aircraft, sensor dynamics, actuator dynamics,
and controller) presented in the fly-by-wire report AFFDL-TR-71-20,
Supplement 2, was selected for the parametric study with the DIGIKON soft-
ware, The Mach 1,2, 5000-ft flight condition (§ max) was chosen because of
model frequency considerations (highest aeroelastic frequencies), Three
bending modes are included in the aircraft model,

Figure 7 shows the four blocks into which the overall model was separated and
the interconnections between blocks.

The procedure for data generation for the parametric study is briefly outlined
as follows, Starting with the physical equations or the system block diagram,

a simulation diagram is drawn, From the simulation diagram, the state
equations, summing point equations, and response equations are written, These
equations are then programmed for the DIGIKON software. A similar procedure
is followed for the controller, sensors, and actuators, After the subsystems
have been verified, they are interconnected as shown in Figure 7 by the
DIGIKON software.

Parametric analysis by software was carried out to relate the poles and the

frequency response of the F-4 longitudinal control system to the sample time
of the controller, The following parameter set was used:

11
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Sample Time: 0, 1/1000, 1/160, 1/80, 1/40, 1/20 scc.
Coefficient Word Length: 24 bits

Following this, a parametric study of F-4 longitudinal control system gust
response ratio performance was conducted,

The overall closed-loop F-4 longitudinal control system model was utilized to
develop the state and output variance to a gust input, With the continuous gust
input, variances are computed with a continuous controller first, and subse-
quently digital controllers with T =1/1000, 1/160, 1/80, 1/40 and 1/20 sample
times, The gust was represented by a filtered white noise, A first order
filter with bandwidth of 46 rad/sec was used.

The parametric study was concluded with a brief investigation of computational
time delay effects and a new model was developed, In this model, actuator and
gust dynamics are modified (a third order actuator and a second order gust
filter), The same model is used in the simulation tests,

The following set of computational delays was used for parametric study:
Td =0, T/4, T/2, T sec,
The sample time was fixed at ' = 1/40 sec,

The effect of computational delay is studied by computing poles and zeros of
the overall closed loop system,

13
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SECTION III

MODE LING FOR THE DYNAMICS OF MULTIRATE |
MULTILOOP SYSTEMS :

In this section we first briefly present material on the autom#{ic modeling
of interconnected dynamical systems for tradeoff studies. ,/his is followed
by the transformations in state space. S, Z and W transf/frms are con-
sidered. The Z-W transformation in state space facilitrfes the interactive
design process. S-Z transforms are developed for ob#ining the discrete
plant representation. Digitization of existing continydus control laws using
the Tustin transformation is also considered. Nex *we present single-rate _~'
modeling of digital control systems by software. »lhis is followed by the 1
discussion on the multiloop multirate system mideling. Finally, an example

is presented treating a two-rate system with abdmputational delays.

To perform analytical tradeoff studies of c/gital flight control systems (or
any other control system) one must develop its overall mathematical repre-
sentation (i. e., model). For the linea? flight control design, this model
takes the form of a set of differentia‘kand/or difference equations.

4

A uniformity in the model form (i?¥respective of the size or the internal
structure of subsystems) facilitdtes the evaluation of various performance
measures in the analytical trafeoff study. One such form is the state variable
representation of the overal odel,

In the following we brieff‘{}' present an algorithm for automatic generation of
a model in this form u«ing the physical equations which characterize the
elements of the systg/h.

. i

DEVELOPMENT OF THE LINEAR SYSTEM MATRICES FROM THE ]
SIMULATION EQUATIONS 1

Figure 8 shows a typical longitudinal channel of a tactical aircraft, In 1
general, the simulation equations of this system take the following form: :

x = f(;(, y, X, (1)

y = g ¥, x u) (2) §

r= h(J;, y, X, u) (3) i
where 3

X =n_Xx 1 vector of the output of integrators ‘

14
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y = nv x 1 vector of the output of summing points
’ r =n_x 1 vector of the system variables of interest (response outputs)
u =

n, X 1 vector of the external inputs

The functions f, g and h are usually nonlinear, For the linear analysis they
can be linearized about a given operating point, In the following, we shall
assume that the simulation equations represent the linearized model. In
this case, Equations (1), (2) and (3) can be put in the following form:

x=Pxx+Fyy+Fxx+Puu (4)
'y=Gxx+(xyy+Gxx+Guu (5)
r=H:x+ Hyy +H x+Hu (6)

and this set of equations can be reduced to the following standard form by
algebraic operations

x = Ax + Bu (7
r =Cx +Du (8)

On the surface, this task appears to be very simple to carry out with paper
and pencil. However, for large systems the writing of simulation equations
in the format given in Equations (4), (5) and (6) is prone to human error and
should be avoided.

In the following, we present an algorithm which automates the transition
from the physical equations (analog simulation equations) to the state variable
representation given by Equations (7) and (8).

Let us define two vectors as follows:

v = col ()2, y, r) (9)
w=col(x, y, x, u) (10)

Obviously, Equations (4), (5) and (6) can be written as
v = F(w) (11)

The matrix coefficients given in Equations (4), (5) and (6) are then obtained
by first finding

F
ow
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and then properly partitioning it. This term aa—Fw is called the sin.ulation
matrix, The sizes of its rows and columns are given respectively by

n=nx+ny+nr (12)

m=2nx+ny+nu (13)

The coefficient matrices obtained by partitioning the simulation matrix is
indicated in Figure 9,

e g
- 1 -o‘r N -or- n 0'0 "N
x v x 1]
F.
: r» rl u U
W G' Gv Gl " ni "
1"
H H H H r
A u '

Figure 9. The Simulation Matrix

The column vectors gF i=1, 2, ..

i
L =1 (14)

wj=0,j=l, 2, ..., m, jt#i

and evaluating (11). This yields the coefficient matrices.

. , m are obtained simply by setting

In the sequel, the algebraic reduction process will be described. First,
Equations (4) and (5) are written in the following form:

[(I-F-) | -F ] [F F :I (x
X Y X u
-G’-‘ l (I - Gy) Gx Gu u

y is obtained in terms of x and u by solving Equation (15).

X

b/

(15)

Thenl*

Then r is obtained in terms of x and u by substituting (15) into (16):
= X x
r = (H, | Hy) [y] +(H_ | H,) [u} (16)

17
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These reduction operations are carried out by the computer using the simulation
{ matrix storage space,

- o

The software which implements this algorithm is called STAMK,

Implementation of the Simulation Equations

T ST

The analog simulation equations representing the system dynamics [Equations

(4), (5) and (6)] are implemented in subroutine SIMK, (The user programs this
for his system,)

=

To demonstrate how SIMK is used, we give the following example,

A simplified short-period equation of an aircraft is given as follows:

o = (Mae) b * (Mé)e + (Ma),, + (M&)& (17)
i _ . -L .

E a =9 UO n, (18)
n, = ( Zn)“ + Zge)8e (19)

The normal acceleration sensed at station "a away from the c. g. is given by:

n,=n, + zao (20)

Figure 10 shows the simulation diagram of the short-period equations.

It is assumed that the longitudinal controller configuration is given as shown in
Figure 11. It can easily be shown that this controller can be simulated as

shown in Figure 12. (For transfer block inputs, SIMKT may also be used as
described later, )

In Figure 12,
T

1 1
S R RS RS (21)

——— E——
(. it abiaar poill
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Figure 10. Simulation Diagram of the Short Period Dynamics
{‘ Figure 13 shows the overall simulation diagram.
; The following simulation equations can be written from Figure 13:
| 6 = (Mbe)be +(Ma)°' +(Mb)+ (M&)o. (22)
. ; 1
a =0~ n 23
U " (23) 5
6 = K, b, (24)
i€ . | BT i
n = -an+yn, (25)
n, = (-Za.)a +(-Zbe)6e (26) 3
n, =n, +(4)0 (27) ;
n; = (KMo + (K )n, (28)
19 i 3
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% 4
h lleve, ng = 4, ny = 6, n. = 3, and n, = 1,
Subroutine SIMK is essentially IFortran statements of these equations, The
E right-hand side variables, namely, the integrator inputs (x), the summing
s point variables (y), the integrator outputs (x), and the external inputs (u), 1
3 ave cquivalenced to the array w(i), i =1, . . . m array in that order, for 4
example, EQUIVALENCE (THETDOT, W(1)), (A1.FDOT, W(2)), etc.
; Similarly the left-hand side variables, namely, the integrator inputs (x), the 3
summing point variables (y), and the external output variables (r), are equated 3
; to the array v(i), i =1, 2, . . . n in that order., I'or example: 1
® V(1) = MDELE * DELE + MALK * ALK + MTHDOT * THETDOT :
FMALFD * ALIFDOT .!
° V(2) = THETDOT - . . .
1
The parameters such as Vo, Me, Mbe, ete,, are usually equivalenced to an :
‘ array of constants, ', which is read in the initialization part of the program
3 for ease in programming,

Generally, a flight control system consists of several interconnected dynamical
blocks (i.e., subsystems)., The overall system model is obtained in two steps.
I'irst cach subsystem model is generated.  Subsequently, they are combined
using interconnection equations fo get the combined model.

s e ik R

Subroutines implementing the subsystem differential equations are named as s
follows: i
SIMKS - SENSOR !
SIMKV = VEHICLE i
SIMKA = ACTUATOR i
SIMKC = CONTROLILER 3

-

The subroutine implementing the interconnection of sensor, vehicle and
actuator (i.e., plant) is named SIMKP, The subroutine implementing the
interconnection of the plant and the controller is named SIMK,

MODELING WITH TRANSFER IFUNCTION INPUT

As described previously, the simulation subroutines (i.e., SIMKC, SIMKV,
etc.) implement the "differential equations" of subsystem dynamics. To

22
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develop a simulation subroutine for a system characterized by its transfer
function, it is required to draw first a state diagram of the transfer function
and subsequently to obtain the differential equation firom the state diagram.
This process can be antomated tor rapid and efficient iput of transfer fanc-
t1on blocks into the DIGIKON system,

in the following we present an approach to carry out system modeling by soft-
ware with transfer function inputs., 'The approach consists of two parts: (1)
I‘or each transfer function block, the corresponding quadruple is obilained,
and (2) the subsystems are combined using the interconnection cquations and
the overall system quadruple is obtained. In the following we discuss each in
that order.

Transfer Function and its Quadruple

Consider a system characterized by its output/ input relation:

bs  +b sn-1+...+bs+bo

{J{::) = li(s) = = n - n-1 1 ! an’G 0 (35)
as + a 18 .. +als Fao

There are many ways of realizing this transfer function. (See Appendix B
for major realization forms. ) In the {ollowing we shall develop the [nput
I'robenius form realization and obtain the corresponding quadruple in para-
metric form for software implementation.

The long division of Equation (35) yields

b
-|_n , 01 -0
bn [bn-l an) an- Jb Tooo ¥ [bo - ao]
I(s) = e + s ) (36)
n a s a1 5 o | +als+a0
This can be written as
bn n-1 bn
b [bn-l- a_ an-1i|S HERE *'[bo “la ao]
| n 1 n n ]
H(s) = T - a3 (37)
-1} n-1 ao
n DU B2 L 2
n an

I'igure 14 shows the state diagram corresponding to Equation (37). The cor-
responding quadruple (A, B, C, D) is directly obtained from the state diagram
and is presented below




|
B=col] 0O, 0............ 1
L | a
n
t b b
o = n -{_n - |_n
| = = l:bo a % |2 TlT ™ lbn-l a_| %n-1
| n n n
by
D= a—'
n

The transfer function coefficients in kEquation(35)form a 2 x (n+1) array as indi-
cated below

b b
s ) __n n-1 | ..... al ao (39)
R 1

where jis the transter function block number (1IYigure 15).

B ke e S o Lo g i i il

I"quations (38) and (39) form an algorithm for oblaining the quadruple of an
n-th order transfer function. Subroutine TRANSK implements this algorithm,

-

TT IRy

O —————
|

+

i sk S o i g R e

ek i T a3

|
— —

Figure 14. I[nput Frobenius I'orm State Diagram of a Single Input,
Single Output Transfer Function
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Overall System Quadruple

To develop the overall system quadruple, one must combine the subsystem
quadruples obtained as described above using the interconnectiqgn relations.
‘To demonstrate the approach taken, consider a block diagram of a system

containing three transfer function blocks as shown in Figure 15.

r |
i HS2 HS1
wll) 74 r(1)
—— x(2) x(1) <
0(2) (1) r(
: BLOCK 2 ' BLOCK 1
HS3
u(2)
& —» x(3) &
ui'{3} r.l'[31'
BLOCK 3
I |

Figure 15. Block Diagram of a System Containing Three
Transfer Blocks

laveh bloek is identified by Tour quantities: (1) a bloek number, () 1S aoeeay
representing the teansler faneteon didn, C3) state vector paamber, and ()
oulpul =inpul prvie, We note that the onpite e aabpals G0 e al ), at )y, aed
r1) external 1o the hox are anaabecvipted varinbloa, whey oo inagide The lee
they are subscripted with i denoting that they are indernal varinhlog,

With these definitions, the simulation equations corresponding to the syslem
shown in Figure 15 can be written as follows

X(1)= Apx() + Byu(1)
x(2) Apx@) + Byu)) Dynamices (40)

x(3)= Aax(3) + Bau3)

et b

o
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\
ri(l) = (‘.lx(l) + Dlui(l)
r-i(z) = C2x(2) + Dzui(2) > Internal outputs (41)
l‘i(3) = (‘Sx((i) + l)3ui(3)
“i(l) = ri(2) + 1'.1(3)
9y . Internal inputs
"iu) = u(l) - ri(l) } (interconnection relations) (42)
ui(3) = 1u(2) )
v(1) = r (1) ) External output (43)

The quadruples (A, B,, C.,, D.)i =1, 2, 3 are provided via subroutine
TRANSK, The set of équafions given above are implemented in a compact
form in subroutine SIMKT. The combined system quadruple is obtained via
STAMAK as described previously.

llere we note that the '"form" of the dynamical equations and the internal out-
puts are invariant (Equations (40) and (41)). With an additional index indicating
the block number, they can be expressed in a compact form for an arbitrary
number of blocks. We also note that the variable part described by kEquations
(42) and (43) have the following structure:

u.

i Pri+Qu (44)

R ri+Su (45)

r

The quadruple (P, Q, R, S) appearing in Equations (44) and (45) are called
the interconnection quadruple. For this example their values are given as
follows:

0 1 1 0 0
P={-1 0 0, Q=|1 0|, (46)
0 0o O 0 1

R= (1 0 0)), S =(0 0)

This shows that it is possible to use the same simulation subroutine for model-
ing with arbitrary transfer function blocks and interconnections can be used if
along with the transfer function data the connection quadruple (P,Q,R,S) is
input. The interconnection quadruple of SIMKTC is not implemented in the
DIGIKON system.
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I'or a demonstration of the approach, subroutine SIMKTC implements liqua-
tions (40) through (43) for the 1'-4 continuous controller. This is presented
in Appcendix A,

TRANSFORMATIONS IN STATLE SPACK

screte models for both the control and the plant are required to perform
sample rate and wordlength tradeoff studies. We present two methods for
obtaining these models from their continuous representations. All discrete
models are expressed by the following standard-form set of difference
cquations

x(k+1)  I* x(K) + G u(k) (47)
y(k) 11 x(K) v u(k) (48)
where
x(tk) = x(k)
,v(tk) = y(k)

u(tk) = u(k)

The z-transtform is used to develop the discrete model of the plant.  The Tustin
fransform (‘T-transform) is uscd to develop the discrete model of the control-
ler from its continuous model (digitization), The z-transform can also be

used on the controller,

To facilitate direct digital design, the w-transform is also developed. The
results are summarized briefly in the following paragraphs.

DISCRETE MATRIX MODEI FOR Tiikk PiIYSICAI. PILANT

Referring to IFigure 16, we see that there are two kinds of inputs to the plant.
1) Continuous inputs (wind gusts and other analog disturbances, ng)

2) Piecewise constant inputs (from the zero-order hold units, xh)
The problem here is to find the exact response of the plant states at sample
points as well as all other intersample time points with these inputs.

The analysis starts with the physical plant continuous matrix quadruples (A,
Bp, Cp, Dp). This quadruple is obtained by software (STAMK) from the

simulation equations of the plant as discussed above. The physical plant
cquations are given by
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2 qQ
xh(k) '
o G
TO DIGITAL
COMPUTER
8 D
Bpl 92 p
X, (V ' xp(t) -
— 1 _'_._ l cp y
0 5 Upl + S p
AP

I'igure 16. State Diagram of I’hysical Plant Including Hold Elements

xp = .»’\pxp + ”pup (49)
= Cx 4D 50)
Yp pp p'p ( 1
'he state responsc is given by
At-t) t A(t-s)
x (t) = ¢ x (k) + | e B u (s)ds 51) :
P P( t‘f PP { :
where x _(t,) = x (k). ]
VIl( p k p 31
In the following, the discrete matrix model dor the physical plant with picce-
wise constant inputs is developed,  [For the response to both kinds of inputs,
scee liquation (337) or page 109, ] 1or this case the state responsc of the }
plant is given by: '
A=) (-t) Ags
x (t) = e x (k) + e B _.ds| u_ (k) (52)
P P ;1 pl P

where o < (t-tk) ST,
At sample points we have
k+1) = I° k) + G k
xp( ) pxp( ) plupl( )

where xp(tk+1) = xp(k+1)
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I c P (54)

b p
I /\p

(-p] J c Iiplds (HH)
l‘ [$)
1
‘? ol
~ AT i

G e P -1 A 13 (56)
: pl p pl

if the inverse cxists.

In dynamical systems with a pure integrator, liquation (56) cannot apply, since
Ap~" does not exist (system has a zero eigenvalue). To circumvent this ap-
parent singularity we assign a state vector to holding elements as shown in

I'igure 16 and develop the transition equations for this homogeneous system.

et L A i b

The augmented state equations are written as follows:

A

x_ = A x_+ 1B u(k), (k) = x (57)
*p pp - plip p po
‘ ‘;(h =0 xh(k) = X0 (58)
= H < < 3
: where up(k) x, (k) constant for t, St<t .. i
5 This is equivalent to the homogeneous system 1
] . i
. x = Ax (59) ]
| x |
! where o ARG ( P ) :
{ *h
1 Ay T (60) 3
g 0 0 ]
. The transition matrix for this system is given by 5
; AT
! Foze (61)
‘ where by definition

¥, = -fl—+——lf (62)
i 0 I
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I'herefore, by this procedure we eliminated the integral given by Equation (55)
or the relationship given by (56) which is unduly restrictive.

In summary, we first form Equation (60) then evaluate (61) as described
below, and, finally, partition I, as shown in (62)., This yields the sought
matrices Fp and Gp.

To compute F = eAT, we use the following algorithm:

AT = (1 N e-AT)'l (1 N e.»\T) 63)

W2 m . AT)Z AT)M :
= [I41- AT +(‘f:‘—:1)— +.. H-1T %—1,-)—— + Eo] 1 [[+1+AT+% e +(—m-!)—- + Eo]
(64)
where m is the maximum power used in the rational approximation. For
m = 3 this yields
eA'1 = l-‘p + O(Ts) (65)
whore
ey Tl (66) ]
p 1 2 §
U \'1‘)3 ('\’I')"* ;
lq l = l = T t 4 - 12 (67)
s =2 S
S AT (AT)® + (AT)
I i 12 (68)

‘The terms appearing in Equation (64) are recursively computed. An option is

available so that the power series expansion !
82 }

FIT) = 1+ AT +(35 + ... (69)
of eAT can be computed for specified numbers of terms as well. The i

algorithm specified above is implemented in Subroutine EXPK3.

Selection of Transition Time

drouiri

The transition time T used in EXPK3 is computed from y

- ok
Tk =2 TS (70)
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where

T
s

k

Sample interval over which matrix expotential is computed

integer ~ 1

T'"he subinterval index k is predicted using the maximum eigenvalue of the
continuous system matrix A. ‘T'he actual value of the parameter k and the
intersample time interval, Tk, a. ¢ subsequently obtained using a relative
error criteria,

Since
LK
l'(lh_)—ll'(lk)] (71)
the successive values
Sktl LK
“:(kal)lu and |l"('l'k)|“ are computed, and the relative error

on cach element is found. “t'he index k is incremented until the maximum
relative error becomes less than a specified number. Non-normal exit with
a proper message occurs if k exceeds its limit, or if the relative error can-
not be reduced further. This computation is followed by the eigenvalue and
steady-state gain checks, The steady-state gain is defined as the steady-
state value of the state vector of the system, subjected to unit step input, if

it exists (1.e., x - 0 for continuous systems; el N for discrete systems),

Since the sampled states and continuous states must have the steady-state
value we get the lollowing gain check equation

1

Al oa-mlg

G (72)
The subroutine ENPR2 implements the above algorithm,
8

The cigenvalues are computed both in the z-plane and the s-plane, The
cigenvalues s of the A matrix is transformed to z-plane using




i . ol i findbhiaiibe dladeime o ae oo = oo blbade o Lande
P g T, e
iRt ik B e i b L il e

skTs

P, = e

and subsequently compared with the eigenvalues of FY( Tg). Also, the eigen-
values zZ) of F(Ts) ar

e transformed to the image-s-plane via

A _ 1 : . j6
5, =-,I:(log|zkl + Jek) where 2 lzk'e k (73)

and compared with the eigenvalues 8, of A, As is well known, this inverse
process is not one-to-one unless the half sampling frequency

3

Zs
2

~

(74)
s

is greater than the maximum frequency (i, e.,
the eigenvalue of A, [ many cases this condit
pProgram computes the foldover index q from t

the largest imaginary part) of

ion is violated (foldover). The
he relation

W =0+ qu (75)

where

€Q

= corrected frequency
® = computed frequency from Equation (73)
w, = sampling frequency from Equation (74)
Both corrected as well as folded frequencies are printed out for comparison,

This finighes the description of the algorithm for computing the pair (F, G),

Obviously, for this case,

the output equation (see Equation (48)) remains the
same, That is,

= 76
Hp Cp (76)
= 7
E =D, (77)
Then at sample pouints, the state of the plant is described by
k+1) = F k) + G = 78
xp( ) pxp( ) plup(k), xp(o) X0 (78)

yplk = E %K) + B u (k) (79)
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This finishes the description of the algorithm for obtaining the discrete
matrix quadruples (Fp. Gpl’ Hp. Ep) corresponding to the physical plant or

1 control plant driven by piecewise constant inputs.

E Again we note that the discrete matrix quadruple ( Fp, Gpl‘ H p’ Ep) of the

E plant as generated above is a function of the sample time, Ts' The sub-

, routine which implements this algorithm is called subroutine EXPK. It is 3
! fully documented in Section IV of Volume II. 5
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Automatic Exponentiation and its Relation to Direct Digital Design

Taking the z-transform of Equaticns (78) and (79) gives
S = + (80)
(zl Fp) Xp(z) z xp(O) GpUp(z)

= (81)
Yp(Z) Hpo(z) + EpUp(z)

Assixming zero initial conditions {i. e., xp(O) = 0] we obtain the-input-output
relation of the system in the z-domain as follows:

= - "1 [/
Y (2) = (U (2I-F ) Gp+5510;z) (82)

The z-transfer function between the i-th output and the j-th input is then ;
given by: i

Y (2) - 1
'ﬁ—j-(w- ?u(z) = hpi (ZI“Fp ) gpj + epij (83) :

s S s

where hpi and g _. are the i~th row and j~th column of the Hp and Gp matrices,

Pj
respectively.

We note here that the presentation of design methods and procedures is outside
the scope of this work. However, we point out that the available software in
this program can be used to facilitate the design.

For "direct digital design" in the z-domain, for example, Equation (83) (or
(82)) becomes the starting point of the design (i.e., the z-transfer function of
the free-plant). The poles and zeros of these expressions are found by
software (POZL{) as will be described later. Subsequently, compensators
are designed using the ropt-locus in the z-plane,

DISCRETE MATRIX MODEL FOR THE DIGITAL CONTROLLER

To develop a discrete time model for the continuous controller dynamics, the
matrix version of the Tustin algorithm is used. The z-transform could also

be used (as above for the physical plant) to obtain somewhat different results. ]
The analysis starts with the continuous controller matrix quadruple (Ac' Bc, {

Cc‘ DC ). (This quadruple is obtained by software (STAMK) from the simu-
lation eq.iztions of the controller as discussed in Appendix A.)

The controlicr equations are

X * Acxc + Bcuc (84)

yc = CCxC + Dcuc (85)
Transforming Equation (84) gives

= (afop -1
X.(8) =(sI-A ) " B U (s) (86)
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SPUIGN -

This can be written as

-1
A T BCT
X (s) = —f- L= — —5— | U.(8) (87)
Now replacing =, S0 ~ by = = +1 (Tustin's Rule), we obtain
z-1 AcT \™! BcT
Xc(Z) = zi L= —5— -5 UC(Z) (88)

Clearing the fractions and rearranging,

X (2) = (21 - Fl'l Fz)'1 (z1+1) G U (2) (89)
where
A_T)
Fo= (1--% (90)
AT)
F2 = I+ 5 (91)
B_T

We note here that F 1 and F o 8re analytic functions of A Therefore, they
commute with A

From Equations (90) and (91) it follows that
1 1 F2 (93)

Substituting this into the second term of (zI+l), Equation (89) becomes

Xo(z) = [(F1-1G1)+ [21- 7 )

-1 -2
2F1 G1 Uc(z) (p4)
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Substituting this into Equation (85) yields

-1 ) -1, -2 -1
Yc(z)=[Cc(zI-F1 Fz) (21:*1 Gl)+ch1 G1+Dc”Uc(z) (95)

The transformed system has a new set of states which we shall identify with
the subscript d,

Letting
F,=F,'F, (96)
G, = 2F, %G (97)
H_ = C, (98)
E, = D, +C.F, la, (99)

one can write the state equations of the digital controller as follows:

xd(k+1) = chd(k) + chc(k) (100)

yc(k) = chd(k) + Ecuc(k) (101)

We note that Equations (100) and (101), with matrices defined uy Equations
(96) through (101), have the transfer function given in Equation (95),

The state diagram of the digitized controller is shown in Figure 17,

uc(k)i l

2F

2
1 6

Figure 17. State Diagram of the Digitized Controller
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In Figure 17,
X d(k) = State of the digitized controller
x (k) = "Digitized state" of the continuous controller
Yo (ki = "Digitized output' of the continuous controller
We also note that the controller matrix quadruple defined as (Fc, Gc, Hc, Ec)

is a function of the sample time, T (see Equations (90), (91) and (92)).

The system quadruples defined by Equations (96) through (99) are implemented
in subroutine SWZK. It is fully documented in Section IV of Volume II.

The Tustin transfer function is given by Equation (95). As with the physical

plant model, the poles and zeros of this function can be found using a sub-
routine (POZK) with the developed quadruple,

Steady State Gain

The steady state response of xc(k) to a unit step input is obtained from
Equation (94) as follows:

[ -1 IS PR TS RN
X [Fl G, + (a1 F, Fz) 2F G1] (102)
z=1
This can be written as
x =|F. leor Y(r. -F) g (103)
css 1 1 1 2 1
Using Equations (90),(91), and (92) with (103) yields
o A T|-11B.T
- -1
Xcss [Fl I+('Jz— ]—zL (104)
A Ti-1
Factoring| - —g , and making use of Equation (90) finally yields
x__=-A"1p (105)
css [ c
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This shows that the steady state gain under the Tustin transformation is
invariant. If the continuous system is prewarped for locating the critical
frequencies, a correction to the gain term is made to maintain the steady-

state gain invariance,

Prewarping for Pole Placement

L TSR

Consider the fo'lowing conformal transformation
= [, . 8L\"1 sT
fs) = {1- 571 (142 (108)

We can define a matrix function of a matrix A, corresponding to Equation (106)
as follows

F(A) = (1 -AL) 1+ AL (107)
Let the eigenvalu2s of A be {sk} k=1, ... n. Then the eigenvalues of F(A)
are given by
skT\-l SkT
;k(T)- 1- 2 1+—2_ k-la -ocnn (108)

This relation shows that when A is a stability matrix (i, e., all eigenvalues
are in the L, H. Plane), then eigenvalues of F are in the unit circle. We
note that the same is true for the matrix

FA, T) = 2T

generated via the transformation

T

f(s) = e® (109)
when the eigenvalues
s.(T
2, (T)=e (110)

38




L il & AL S it e e debzed i cab i d i duiea il g At bhan i A g o et L R

»

e Al

For each fixed LI the locus of Equations (108) and (110) as a function of

sample time parameter T shows that

Lim & (T) = -1 (111)
T ==
and
Lim zk(T) =0 (112)
T
E
4 Also, gk(T) does not cross the real axis in the range

0KT<o (113)

This implies that the poles of gk(T) always remain under the half sampling

frequency (m/T). Therefore, under this transformation, the "system modes"
do not foldover for any sample time. The penalty we pay for this nice
property is the shift in frequency. The shift can be compensated for a given
sample time T. This is called prewarping of a continuous system. We note
that when the system is prewarped to maintain critical frequencies, the non-
folding property of Tustin is lost.

a0 bt

Let A be the prewarped transition matrix corresponding to a continuous controller
¢ matrix A, Let F be the corresponding discrete system transition matrix
i defined by Equations (90), (91) and (96). If F is to have the same poles it

must be similar to eAT. The simplest case is:

F o= AT (114)

~ | _At|-1[, AT|_ AT
F"(I 2) (I‘l'—z— e
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Solving this for A yields

., AT
A=-,1—.-tanh 2

On the other hard, from Equation (93) we obtain

~ -1 I+F
F, =73

Substituting this into Equation (89) and introducing a gain matrix K

~

1+ F

3 ) (z+1) BT/2

H(z) = K(z1 - F)"!
The steady state gain invariance requires

e .oyl e T |
HCSS-K(I F) (I+F) BT/2 A "B

Solving for K yields

K=(-F)a+F)- AL

Substituting Equations (120) into (118) yields

Hz) =(z1-F)V(F-pal B%l-

using Equation (114) gives

z+1
2

ﬁ(z) = (zI S eAT)-l (eAT

G=(eAT-1)a™'B

L I)A'l B

Then Equation (1.2) can be written as

-1 (1 + F)G

ﬁ(z)=g— +(zI - F) .

40
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Now by inspection we can write discrete quadruples corresponding to
the prewarped Tustin transformation as follows:

F=elT (125)
G=(2T-p a’lB (126)
H=(C +CF)/2 (127)
E=p+58 (128)

2

Note close resemblance between above and the plant discretization given by
Equations (52), (54), (76), and (77).

State Model of the Discrete System in the w-Plane

Direct digital ccntrol synthesis in the z-w plane calls for algorithms for
finding the w-plane transfer function from the z-plane transfer function and
vice versa, In the following we present one such algorithm based on a
systems approach. The development starts with the discrete system matrix
quadruple {F, G, H, E). (This quadruple is obtained by a software (STAMK)
from the sirnulation equations of the discrete system structure as discussed
above.)

The system equations are:
x(k+1) = Fx(k) + Gu(k) (129)
y(k) = Hx(k) + Eu(k) (130)
Transforming Equation (129) with zero initial conditions yields:
zX(z) = FX{z) + G U(2) (131)

The transformation to the w-plane is defined by

1ltw
2= (132)
The inverse transformation is then given by
= 2-1
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Substituting Equation (132) into (131) yields:

-1 -
X(w) = -[wl - (-Fl‘l Fz)] F,” (wI- )G U (w) (134)
- where
F =U+F) (135)
F,=(I-F) (136)

From Equations (135) and (136) it follows that

1=-F "'F, +2F ! (137)

Substituting this into the second term of (wl -1), Equation (134) becomes

l -1

X(w) = {[wl - (-F,"'F )] ~ 2F, "% - F, " G} u(w) (138)
Substituting this into Equation (130) yields the input-output relation in the
w-plane:
o SN -1 i
Y(w) = {H [wI - (=F, " F,)] ¢F) "G-HF, "G+E}U(w) (139) . :

The transformed s

ystem has a new set of states which we shall identify with
the subscript w.

We define w-plane quadruple as follows:

T O i T TP T T PR APy SO L Wy A

: (140)
G (141)
(142) -g
G+E (143) |
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The state equations of the
as follows:

dxw

—— = A

It +B u

wrw ww (144)

] s = waw + Dwuw (145)

We note that Equations (144) and (145

) with matrices defined by Equations
(140) through (143) have the transfer

function given in Equation 139,

The state diagram of the discrete system in the w-

U (w)

ylw)

Figure 18. State Diagram of the Discrete System in the w-Plane
In Figure 18,

X, = state of the w-plane system

x state of the discrete system in the w-planec

y output of the discrete system in the w-plane

The poles and zeros of the transfer fuaction are obtained via POZK using the
quadruple (Aw, Bw' Cw' Dw). The system quadruple defined by Equations
(140) through (143) are impleme i

back to the z-plane ig carried out in a similar faghj

'21‘he dst;mmary of the results on transformations are presented in Tables 1,
and 3,
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discrete system in the w-plane can now be wr .ten

Plane is shown in Figure 18,




t.
|
[ Table 1. s-Plane to z-Plane Transformation
i s8-Plane Data A B C
z-Plane Data F G H E
(%-transform with hold) ¥ e elT G:te?T-n A"l HsC E=D
r
‘z-transform without p o= eNT e eATB HsC E=D
hold)
. . B IR -1
{'. ustin) ¥ = F ¥, G = 2F G H=C E = D+CF, "G
i 1 2 1 1 1 1
I
c a1 AL LY §
Eoick:, G, ]
e B0
! by sl :
;
'! (Prewarped Tustin) ko= eA'I G o= ("AT'” A"l H = Q’_;E B C_Zq ::
Table 2. z-Plane to w-Plane Transformation 1
- - 3
1
z-Plane Data v G H k f
w=-Plane Data Q\ Fﬂ C 6 g
2 -1 = -2 . 2 -1 )
: SRS, B.= 21 G, C=H D = F-HF G, :
: B = E Gy =G j
1
L 2 P
] SRR ]
E e 4
k 4
L
i Table 3, w-Plane to z-Plane Transformation ,
w=-Plane Data X ﬁ 6 ?) l‘.
u z-Plane Data F G H E :
i 2 9 S - a k
A P =2F %G, H-C E=D + F;l(‘-l 3
~ . ]
] G, =B 1
f F, = I+A
L ; 2
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To demonstrate the application of these equations we present a simple example

in the following,

EXAMPLE

Consider the following z=-plane transfer function

. 3(.368 z + ,264)
H (z) = o5y —
This can be put in the following form

4 (z +.7174)
2
z“ - 1,368z + ., 368

HO(Z)= 1.10

Figure 19 implements this transfer function as an Input-Frobenius form.

ukﬂ )

-.368

Figure 19, State Diagram of llo(z)
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(146)

(147)




The discrete system quadruple (F, G, H, E) is obtained from Figure 19 by
inspection, and given as follows:

0 1 0
F = » G = ], H=(7174 1,), E=0 (148)
-.368 1,368 1.104

It can easily be shown that the transfer function
Hy,(z) = H(zI- 7)7 G+ E (149)

evaluated with Equation (148) is the same as Equation (147),

Now transforming quadruple data in Equation (148) to the v-plane using the
appropriate equations given in Table 1 yields the w-plane quadruple data:

0 1 0

A = , B = , C. =(,69299 .976), D = 1.14168(150)
W olo -.462 W 1 w w

It can easily be shown that the transfer function
- - -1 .
Hll(w) = Cw(wI A L, * D, (151)

evaluated with Equatior (150) yields

2
Hy,(w) = -1.14168 ¥ . 393w - . 607 (152)
w + .462w

This can be writien as

1.5(1 = W) (1 +—ppw )
H,,(w) = . 607 (153)

w( 1+~

The same result is obtained by substituting

_1l+w
Z T w (154)

into Equation (146) and clearing the tractions. For large systems, the
substitution approach is not suitable for automatic evaluation of

Equation (153) due to the aszociated algebra. The quadruple transfor-
mation approach on the other hand is simple, accurate and suitable for
large scale systems., We note here that Equation (154) and its inverse,

B O ST TN Y R T VU PP, " O U I TYRE ISP FORTEOT R P (191 X S I TLUTLA e i i s o G0 T 2 ) st e AT i A A i s s et
x e A s




z -1

given by Equation (155), are one-to-one transformations. Therefore, if the
w-plane quadruple (Aw. Bw' Cw, D ) given in Equation (150) were trans-

formed back to the z-plane, the result would be identical to that of Equation (148).

Figures 20 and 21 demonstrate this fact, using the F-4 digital controller for
the sample time T = 1/40 sec. In figure 20, the controller quadruple

(F, G, H, E) in the z-plane is entered, and the w-plane transform (A_, B C D )
is compnted Subsequently, this data is entered and its z-plane
transform is computed as shown in Figure 21, As expected, the output
data in Figure 21 is equal to the input data in Figure 20,

OVERALL SYSTEM MODELING FOR SINGLE RATE SYSTEMS

Having the discrete model for the plant and for the controller, we would now
like to develop analytically the discrete model of the plant-controller system.
We need this for trade studies of sample rate and word length. The complexity
of this model depends upon the form of the control (algebraic or dynamic) and
the nunuber of different sample rates in the combined system. (We neglect
computational delay effects here for simplicity. These are considered below, )
We show how to construct the overall discrete system model for a single

sample rate here, and consider the extension to multiple sample rates in the
next section,

Algebraic Controller

Figure 22 shows the general block diagram of the single-rate system under
consideration.

The plant has the usual discrete representation

k+1 = F k) +
xp( ) pxp( ) Gpup(k) (156)
k = + :
rp( ) prp(k) Epup(k) (157) 4
The controller, for the algebraic control system, has the form i

rc(k) = K uc(k)

(158)
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(TS
C

ult)

u (k)
p

CONTROL
> o>
- SYSTEM L

PLANT

1

r (k)

r(k)
rp(k)

Figure 22, Block Diagram of a Single Sample Rate System

That is, the control system box in Figure 22 contains the gain matrix K, We

also have from Figure 22 that

up(k) = rC(k)

uc(k) = u(k) - rp(k)

Our objective is to reduce Equations (156) through (160) to the form

x(k+1) = F x(k ) + G ulk)

r(k)

H x(k) + E u(k)

where u(k) is the sampled version of the input u(t).

representation of the system of Figure 22,
through (160) to obtain

k) = k
x(k) xp()
k) = k
r(k) rp()
F =F -GKMH
PP p
G =G_KM
p
H =MH
P
E =ME K
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(159)

(160)

(161)
(162)

One easily solves Equations (156)

(163)
(164)
(165)
(166)
(16%9)

(168)

This is the overall discrete
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with
M= [I+ prl'l (169)

In words, the state and response of the single sample rate system with an
algebraic controller are the state and response of the plant, The matrix
quadruple (F, G, H, E) is computed from Equations (165) through (169),

Dynamic Controller

In this case the plant in Figure 22 is represented by Equations (156) and (157),
and the control system is given by similar expressions:

xc(k+1) = chc(k) + Gc uc(k) (170)
rc(k) = chc(k) + Ec uc(k) (171)

The relationships of Equations (159) and (160) still hold, Our objective is to
derive the overall discrete representation [ Equations (161) and (162)] for the

system described by Equations (156) and (157), (159) and (160), «nd (170) and
(171),

The discrete overall repregentation is much harder to obtain for the dynamic
controller than for the algebraic controller, One finds that

x(k) = col [xp(k), xc(k)) (172)

r(k) = col [rp(k). r. (k)] (173)
[Fi; Fig

F = (174)
| Fa1 Fa
a,

G = (175)
rH,. H

H= | 11 12 (176)
LHy)p Hy
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. B R S oot e s ool oot e, L.
G it s L e e Ao e ae 9.

e e T T

E

1

E = (177)
; F‘11 = Fp-GpMEC Hp (178)
-
' F12 = G1 M Hc (179)

F21 = -GC[I - Ep ME c]Hp (180)

F22 = Fc - Gc Ep M Hc (181)
: .
C:‘r1 Gp ME (182)
E_ G2 = Gc [I- Ep M EC] (183)
 emmmeeecmmdaliiol
| H11 = [I- Ep M Ec] Hp (184)
k
le = Ep M Hc (185)
i H21 = - M EC Hp (186)
B - E,ME (188)
E2 = M Ec (189)
with -1

M= [I+ ECEP] (190)
In words, the state of the discrete system of Figure 22 with a dynamic con-
troller is that of both the control system and the plant, The response of the
overall system is that of both the controller and the plant,

» G, H, E) is derived in terms of the quadruples of both the
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Parametric Interconnection Model and Interconnection Quadruple

The previous example leads us to the parametric interconnection model with
interconnection quadruple (P, Q, R, S). This is illustrated in Figure 23,

u
(AUGMENTED DYNAMICS) o
I'I r
l'xi}
af
()
Figure 23. Parametric Interconnection Model
Let
X; = col(xp. xc) = augmented state
r, = col(rp, rc) = augmented internal output
u, = col(up, uc) = augmented internal input
u % external input
r = external output

Let (Fi‘ Gi' Hi’ Ei) be the augmented quadruple given as follows:

F_ O G 0 H 0 EpO

F, = , G, = , H, = , E_= (191)
0 F 0 G 0 H P Lo E
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The following system of equations describes the overall system model:

+
x =F x+ Giuk (192)
1 r, = H x+Eu, (193)
| w, =Pr,+Qu (194)
i r =Rr, +Su (195)
‘ Solving Equatioas (193) and (194) in terms of x and u yields:
_ - -1
r, =(_,-EP) [H x+E Qu] (5) (196)
_ - -1
u, = (Iui PE) " [P Hx +Q uj (6) (197)

Substituting Equations (197) and (196) into (192) and (195) yields the overall
system quadruple in the form of Equations (161) and (162)

where
F = [F,+G/l - P Ei)'1 PH] (198)
G =G, (1, -PE)! Q] (199) ';
H =[R(_ - EP) " H] (200)
E =[R(, - EP) ! EQ +5] (201)

OVERALL SYSTEM MODELING FOR MULTI-RATE SYSTEMS

In the following, an overall state model is developed for an algebraic digital :
control system (Figure 24) having two different sample rates (inner loop and ]
outer loop rates),

The following equations are derived based on Figure 24 with the digital con- g
troller (or the digital Computer which implements the control law) which ;
operates on an input sequence of sampled information to produce an output

sequence of sampled output; This sampled output is converted to the piece-
wise constant signal by the holds H1 and H2, )
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(PLANT)

iAol By, [T
n =‘:1
2=t

1
’ ] %—E-—-r""é'

Figure 24. Two-Rate Algebraic Control System

It is assumed that the outer loop sample time To is an integer multiple of the
inner loop sample time Ty, In this case T 2 becomes the program period, and
the transition equation at the sample points kTok =0, 1, , , .,becomes

stationary. This equation is given by

x(kT2 + TQ) = Fx(sz) +G fp(sz)

where
F = (Fl + G2K2H2), D= ml— 21

~

~ _ p-]_ ~
G2-(F1 +o-o+F1+I)G2

t

'y
1]

AT
e 1

w .
n

AT

Ty as 1y 4=l
G, = J‘g e "B,ds = (e -I)A "B, (if A has no zero eigenvalues) (207)
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(204)

(205)
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As ATl

T, -1
02=jo e "Byds=(e " -DA"'B, (208)

The stability properties of the system are obtained using F,

DELAY SYSTEM MODELING

Ablock diagram of a model of a system with an algebraic controller and a
com utationa{ de*ay is shown in Figure 25,
g ZERO ; €

HOLD — —E P ——
xh + 1 xp
H [—e—»0—sf G (T) - :
% +
Fy(m

COMPUTER

T swz sw1 T
| s

L =58

Figure 25. Computational Delay Model

It is assumed that the control input to the plant is updated T  seconds after the
state is sampled as shown in Figure 26, =

|
xp *

_-.-—* LA

I
Xh ‘
- Tc —J
] >
b te bt

Figure 26, Timing Program for Delay System
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Table 4 shows the sequence of transitions and corresponding transition equation

for each transition,

Table 4. Sequence

of Transitions

Time Description of Event Transition Equation

t Beginning of a new program cycle [xp“k)' xh(tk)]

t“ SW1 samples xp (tk) and computation of rc(tk) =K xp(tk)
controller output starts

'k+ <t ‘tc The plant state xp undergoes a continuous xp(tc) = Fp(Tc)xp(tk) + Gp(Tc)x (tk) , t= 'c
transition

te, SW2 transmits the computed output to xh(tc*) = rc(tk)
hold unit X, undergoes a discrete
transition

toe St L undergoes a discrete transition xp(tk”) = FP(T-Tc)xp(tc) + Gp(T'Tc)xh(tu)

Let us define

x = col (xp, xh)

Then using Table 4 we can write

and

x(tc +)

Xty 1)

F(T) | G(T)

K 1 o

"F('r-*ra | G(T-T)

Lo|1rn
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x(tk)

x('cc +)

(209)

(210)

(211)
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Substituting Equation (210) into (211) yields

F(T-T ) lG(T-T ) || F(T.) I G(T.)
x(t ) = (o] (o [ C C X(t )
k+1 [ :, K l o k

o | 1 |
or
,‘ F(T) + G(T=T K | F(T-T ) G(T )
x(tk +1) = L = ] :, x(tk)
Noting that

G(T-TC) = G(T) + F(T) G(-T)
F(T-T)G(T ) = ~F(T) G(-T )

Equation (213) becomes

x(kT+T) = F(T, Tc) x(kT)

where

F_(T)+ AH(T,T )K -AH(T,T )
F(T,Tc)=[—p c l c ]

K | o

and
_ AT
Fp(T) = e

T
Gp(T):j‘ eAsBds = (eAT
o

Fp(t) = Fp(t) + Gp(T) K

AH(T, Tc) = Fp(T) Gp(-Tc)
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(212)

(213)

(214)
(215)

(216)

(217)

(218)

-1) A™'B (if A has no zero eigenvalue) (219)

(220)

(221)
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It is interesting to note from Equation (208) that the order of the dynamics
which describe the state is increased from n to n+m where n is the order of
the plant and m is the number of control inputs to the plant, As the compu-
tational delay T, is reduced, the plant state x_(kT) becomes less dependent
on the hold state xj,(kT). In the limiting case, this dependence becomes zero,

The perturbation term given in Equation (221) is easy to compute and

Lim AH(T,TC) =0 (222)

-0
Tco

For small Tc, A H becomes proportional to Tc and is given by:
AH(T.TC) = -F(T) B Tc (223)

The effect of computational delay on the stability of the digital system is
studied by using Equation (217), ]

GUST RESPONSE MODELING FOR SAMPLE TIME EFFECTS

This model is used to determine the gust response (i. e,, normal acceleration
cross-range error, etc.) as a function of sample time, The system specifica-
tions (i.e,, ride quality, landing specs) impose limits as to how large the
sample time can be without exceeding these specifications, In the following the
gust response is determined not only at the discrete sample time points, but
also at all other time points (intersample covariance) as well, The inter-
sample covariance is periodic, with periods equal to the program period. The
n-th order model is shown in Figure 27,

w
e ——

x [t}
i

=
—0 ++ 5 —o—] K ——-o--""’o—l——-—
f) - o I T L
e ]
COMPUTLR {

Figure 27. Gust Response Model for Sample Time Effects
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The physical plant (aircraft) is described by
x = Ax + Bl“p + Byw (224)
where
w = white noise gust input vector

up = K xp(rk) tk £t< tk+1 (225)

We assume that the open loop transition matrix A has no zero eigenvalues.
(This is not a necessary condition. It simplifies the analysis.) Then the
intersample covariance response is given by

¢
wB’, & (t-8)yg (226)

~ ~ t
- ' A(t-s)
X(t) = F(t) X(t,) F ‘() + [ e "°'B,WB’',

Y
where the prime indicates the transpose, and where

F(t) = [eAt+ (et - pa~lBK) (227)
W = E{lww'}

t $t< L (228)

The noise inputs, w, are assumed to be st;tionary. In this case W is a
constant matrix. At the sample points (t = tk) Equation (226) becomes

stationary; and if F(T) is a stable matrix, then Equation (226) has a steady
state solution given by

X = F(T) X F'(T) + V(T) (229)
where
T
As / A/ s
V(T) = e "B,W B, e ds (230)
0

This solution is computed by using the following iterative equation and fast
partial sum technique,

x*D _ Ty xW Foery + vir), x© = ver) (231}
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Once X is found, the intersample covariance response is obtained from

Equation (226) as a function of t for tk

St<t

k+1°

presented to demonstrate the application of these equations,

DIGITAL CONTROLLER

N

O] 1 oot

z T T

| I
e s 55 ne)

n q[t?

+

PLANT

541

Figure 28. Simple Digital Control System with Continuous

Disturbance Input

and

The steady state variance at sample points is given by

-2T
X = (2¢"T - 1)%x +(i'-92——) "82
or
x. o _(1-¢2%T) 2

g
85 o1-(2¢"T-1)%] &

which reduces down to
X = 1+ eT &
s8 8 g
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The following example is

(232)

(233)

(234)

(235)

(236)




This shows that as sample time goes to zero (toward continuous closed loop
control) the output variance becomes

2
s fg_ (237)

We also note that the open loop output variance is

2 !
1 X =9 (23 8) ;
3 open -‘g— b

Per unit steady state output variance at sample points takes on the following :
values as a function of sample time [Equation (236)]: .

0 0.5 1 1.5 sec

Xss 0.25 0,33 0.46 0,69

The intersample response can be computed from Equation (226) for each fixed

- sample time |
1 L) ~{f 3
f xt) = ity X Fit) + vee) (239) |
-2T ?;
3 - -t_,.2 H-e ) 2 ]
X(t) = (2e 1) XSS +T og 0<tsT (240) ‘
ﬁ This response is periodic with period T {see Equation (229)).

, X(T) = X,

The periodic extension of Equation (239) constitutes the meansquare response of
the system for all times, This refrponse is plotted in Figure 29,

DISCRETE SYSTEM MODELING BY SOFTWARE - DISCRETE SINGLE-
RATE SYSTEM

In the previous paragraphs we developed models by analytical means, We now
present a procedure for obtaining an overall discrete system model by soft-
ware, First we develop a single rate model with no delay. Following this, we
describe a multirate model with computational delays. Figure 30 shows the
block diagram of a singl.. rate system,

SEPIYSRRPLRSICHE P DTSR AL PR =
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0.2 -

T L T 1 T
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t TIME IN SECONDS

Figure 29. Periodic Variance Response
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t . L L]
E. Uy ¥ \o—o- CONTROLLER —q—q’/o—r H |—e=—» PLANT ;\o—h
. - T {!C: ; T uu {!p]
| [
Figure 30. Block Diagram of a Single Rate System
We define the two vectors
r < 9
v = col [xp(k+1), x le+D), (k) T (), u k), u k), r(k)] (241)
w = col [xp(k+1), xc(k+l), rp(k), rc(k), up(k), uc(k). xp(k).
x (k), u(k)] (242) g
Then equations describing the system are written in the form (Subroutine
SINK).,
x (k+1) = F x +G u
Xplk ) PP Upp |
xc(k+1) = chc + chC ,'a
k = x +E_u
rplk) PP PP |
r (k) =H x +F u (243) ;
C =@ cc 3
| up(k) = r.(k) 1
u (k) = u(k) - rp(k)
] r‘l(k) = rp(k)
1 Subroucine STAMK is used as described previously to find the overall systemn 4
: quadruple (F,G,H, E),
In the above development, we tacitly assume that the plant and controller inpuis
are updated at the same time, Inthis case, the transition points occur at the
beginning and at the end of the program period, (No discrete transition exists in the
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interval.) This is the simplest structure (single-rate) in computer=-controlled
systems, In practice, one often encounteras two-rate and three-rate aystema
with computational delays, In these systems multiple transitions take place

within the program period. In the following we present a procedure for
modeling such systems by software,

DISCRETE SYSTEM MODELING BY SOFTWARE - MULTIVARIABLE
MULTIRATE SYSTEM MODELING WITH COMPUTATIONAL DELAYS

In general, the digital control systems are constructed by interconnecting

four types of dynamical subsystems: (1) continuous dynamical subsystem
(Plant); (2) continuous holding subsystem (D/A output); (3) discrete-

dynamical subsystem (control law software); and (4) memory holding subsystem

(describing the delayed variables due to computations within the digital con-
troller),

Behaviour of the state transitions corresponding to these subsystems are
shown in Figure 31 with a typical feedback system interconnection.

u [
u u u 4
DISCRETE —o=81 . \irRoLer | b MEMRY L deanoo] | o} pLant [0
= (x,) () 1
X e X A {(x) |'n (xp)
x.(t) Xm(t) Xt
xp(!)

Figure 31. Time Behavior of State Transitions
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To develop a mathematical maodel for much systema which (s valtd for all tiimes,
a hybrid-state is introduced representing the overall system by

x £ col (xp, X, X X))
where
X, ® Physical plant state (output of integrators)
x, = State of the zero-order hold units describing the piecewise
h constant inputs to the plant
X, = State of the digital controller
Xm = State of the memory units (describing the delayed variables

due to computations within the digital controller)

Table 5 shows the form of the transition equations and corresponding quad-
ruples,

Table 5. Forms of Transitions of Dynamical Subsystems

Name Rl:::;;::):ttapt‘::m Equations Quadruples Remarks
Physical u r x* = Fx+Gu Represents interval
Plant p p B PRPaR transitions

R e = e and (F rG -H .E )
(x ) r = Hx +E u PP PP
P P PP PP
Hold Unite ~ x' u Representa discroete
h h ©,1, 1, 0) transition
(xh) AL )
Controller g . x' = chc+chc Represents discrete
c S (F_,G ,H _E.) t“ wetltlias interval
(x.) r = H x +E u c’ ¢ c¢'e ransitions
c c ccce
+
l\),elaygfi _ u r x Tu Represents discrete
ariable in oo o1 transition
Controller ) _ ©,1, 1, 0)
Memory (xm ™ ° xm

s bkt b
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In this approach, the miodeling work begins with the timing program. The
timing program shows the switching time points during one program cycle.
Next, the state update sequence table is prepared wherein events are described
as a function of time and corresponding transition equations written. Subse-
quently, the overall transition matrix for one program cycle is obtained. An
example i8 shown helow in the discussion on software implementation.

To develop an overall system model of this type of system for describing its
response at the program sample points t = kT, k=0, 1, 2, . . ., two approaches
are available:

® Total Transition Approach

® Incremental Transition Approach

These two approaches are briefly discussed below. Subsequently, the incre-
mental transition approach is implemented as subroutine HSIMK to obtain a
multirate system model with computational delays,

Total Transition Approach

The Total Transitional approach is based on the concept of finding the state
response over one program period for each unit initial state vector component
and for each unit input vector component., The resulting outputs form the
column vectors of the total transition pair (F,G).

The use of this approach requires a certain amount of equation manipulation as
discussed below,

The general form of the interconnected model is given by

xt = f(y, x, u) (244)

y =gl x u (245)

r =h(y, x, u) (246)
where

X, x+ = total system state and its update

y = collection of internal variables (internal inputs and internal
outputs)
r = collection of external outputs,
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To compute the evolution of x over one program period, the equations given
above are reordered, and Equation (245) is solved for y. The result is

y  =glx,u) (247)
xt = Hy, x,u) (248)
r  =hiy,x,u) (249)

Now for each unit initirl state vector component and for each unit input vector

component, these equations are evaluated using the transition sequence table

which describes the sequence of updates on x;, xtc, x:l, and xt . 2

m
When all transition points within the program period are exhausted, the i
resulting state vector response becomes a column vector of the total transition
pair (F,G).

This approach is very convenient for a paper and pencil derivation of the
discrete system overall model. It bypasses a lot of matrix multiplications as
required in the incremental transition approach. On the other hand, the
incremental transition approach can be implemented more conveniently in
software,

Incremental Transition Approach

The Incremental Transition Approach is based on the concept of computing the
total state vector and input vector, a sequence of quadruples (incremental
transitions) corresponding to each transition point within the program period, 3
and subsequently combining these to obtain the total transition over one program :
period,

The incremental transition approach involves three steps:

1, Calculation of the incremental transition matrices
2. Calculation of the total transition matrices
3. Simplification of the total transition matrices

The equations describing the interconnected system are in the following form |
(same form as single rate system): 2
i

+

x = f(y,x,u) (250)
y =gly,xu (Z5L)
r = h{y,x,u) (252)
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At eachtransition time point, the appropriate subset of Equation (250) is used with its
data to obtain the matrix quadruple (A Fi' AGi' Hi' Ei) for that transition,

Subsequently, these incremental transitions are used to compute the total

transition as indicated below, The total transition over one program period
is in the following generic form:

x(k+1) = Fx(k) +Go u (o) + G,u (1) +. .. Giu (r) (253)
where

u (i) =the i-th sample of the external input within one program

period
F = Total transition in one program period
Gi = Input matrix corresponding to i-th sample of the external

input in one program period,

Let
r = number of time points at which u is sampled within one
program period
n, = number of external inputs
n = total number of states

Now construct the n x m matrix
G = [GOIGII . e e Gr] (254)
where

m=n Xr (255)

It can easily be shown that the total transition pair at the i + lth transition time
point is given by

[F(i+1) | G(i+1)] = AF(i+1) [F() | G()] + [0 | AG(i+1)] (256)
with ,
[F(0) G(0)] = (1 |0) (257)
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where

: A F(i+1) = incremental state transition from i to i+1

3 A G(i+l) - incremental input transition from i to i+l

Software Implementation

4 Figure 32 shows the block diagram of the state modeling software for multi-
] rate modeling with computational delays,

NUMBER OF TRANSITION POINTS
T() TRANSITION INTERVALS

(FDGD“DED)V (F G MHE) DATA

SYSTEM UPDATE
SEQUENCE TABLE
ISIMK SQ)

:

A PARTIALS AND HYBRID SIMULATION
, REDUCTION ALGEBRA SUBROUTINE

HSIMK 45Q
3

TOTAL TRANSITION

?

REDUNDANCY CHECK

:

(F, G, H, E) MODEL

; Figure 32. Flow in STAMK for Multirate System Modeling
g with Computational Delays

1 Each call to HSIMK produces the incremental quadruple (AF, 4G, H, E) corres-

i ponding to a system transition specified by the sequence number ISQ., The

! total transitions are evaluated from Equation (256) from the starting sample

| point to the i-th transition point, When all transitions are accounted for, the
output becomes the set of total transition matrices over one program period.

To facilitate the computations, state assignments are made to each hold unit
in the system (xh) and each output variable from the controller (xm). In

cases with no delays, xn;x =r, and X, = X, 80 that Xp and X become depen- :

de.nt variables, and the corresponding column vectors in F become zero. For
this reason, the matrix quadruple as obtained above is examined before they .

are printed out, and the zero columns and corresponding rows are discarded :
from the quadruple,
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To demonstrate the approach, we present the following example of the modeling
of a two-rate system with computational delays., Figure 33 shows the block
diagram of a two-rate system with computational delays, In this system the

To1 and T, correspond to computational delays in each control law execution,
It is assumed that T , >T ,.

Table 6 shows the discrete system state update sequence.

1 P r
y
2y . 172 LZ20 IRL p2
0‘-\‘0— r
5~o *n |5 %y O o * o~ . ral T 1
Ye1 ‘1 Uy ™ P £ o —o— s
%
i ;
00— r3 3
]
Figure 33. System Block Diagram
Table 6. Discrete System State Update Sequence %J
Sequence No, System No, Time Updated Transition 3
15Q) ISIMK (IQ) State Interval -
1 1 (kT +T_,) x5 T2 |
2 5 (kT + Tcz) X 0
3 1 KT +T_,) x, (Tgy = Teop)
4 4 (T + T, +) x, 0
5 1 (kT +T/2) % (T/3-T,)
6 2 (kT +T/24) L 0
7 1 (kT +T/2 +T) L T
8 4 (kT +T/2 +T,, +) X 0
b 1 (k+1)T X, (T/2-Tc1)
10 2 (k+1)T + X 0 :
11 3 (k+1)T ++ L 0
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Figure 34 shows the timing program of the discrete system.

OO0 GO0 OO

Ye1
Vo2
1 Kp > 4 ®-
2 % <
3 oxn
4
s x,
—Te2
— T, —* - T, —* |
' 1 :
a k17207 LAl

I'igure 34, Discrete System Timing Program

Figure 35 shows the flow diagram of the subroutine written by the user for

this problem, The math-model (i.e., overall system quadruple) of the overall
system at time points kT is obtained by the subprogram STAMK in the form of
(FGHE),

This quadruple is the exact representation of the dynamics of this two-rate
system with the delays on sample points kT, It is used in the performance
evaluation program,

To demonstrate the software modeling of multivariable multirate systems with
computational deiays, two specific examples are presented, Below, two-rate
modeling is given for a simple system., Inthe Appendix C, modeling for the
F-4 longitudinal system is presented for computational delays.

Example of Two-Rate Modeling By Software

The principles of the multirate modeling presented above are applied in this
example using a simple system, Figure 36 (a) shows the block diagram of the
continuous systein: a simple lag controller, and an integral plant, Figure 36(b)
shows the corresponding two-rate digital system structure, The memory unit
corresponds to the digital counterpart of the hold unit.
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Figure 35. Flow Chart of Subroutine HSIMK for a Two-Rate
System with Computational Delays
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CONTROLLER PLANT

ta) CONTINUOUS SYSTEM

. |
- ?
" 1.2 1
g Il . MEMORY " CONTROLLER “ PLANT . ;
--o.r\c'(?\ - r—q\\of-.- LN i 1
T<IHFLIT OF QUTPUT OF 1
; T CONTROLLER CONTROLLER i
A - 3 2-RATE DIGITAL SYSTEM STRUCTURE Ej
1 i
% Figure 36. System Block Diagrem
E Table 7 shows the plant and the controller data, The digital controller data
: for this example is obtained using the z-transform for purposes of demon-
stration,
Table 7. Plant and Controller Data
Continuous Discrete
Data Data
Ap=0 Fp=1
‘5 Bp = K Gp = KT 1
. Cp=1 Hp - 1 !
Dp=0 Ep=0

E Ac = -1 Fc = e-T 3

E Be =1 Ge = (l-e—T) :

€] Cc=1 He =1

© Dc =0 Ec =0
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The timing program of the discrete system is shown in Figure 37, From this
diagram we see that xp, is updated first. Next, xp is updated., These two
updates correspond to point transitions, and they take place during an arbi-
trarily short time, At time T/2, x. and xp are updated in that order. Finally,
at the end of the program period (Tf, x, and are updated, Each transition
time point (point or interval transition) is assxgned an interval sequence
mumber (ISQ). This number is used for updating the states in the simulation
program, Table 8 shows the discrete system update sequence,

P === 2 ¢ ?

¢ —— 4

* - 4 +

—p 15Q
1 2 3 4 5 6

r T/2 >te— T/2 ——»

kT k + 1T

Figure 37. Updating Sequence During One Program Cycle

_______ Table 8. Discrete System Update Sequence

Sequence No, System No, Time Updated Transition
(ISQ) ISIMK (ISQ) State Interval
1 4 kT + X 0
m
2 3 kT + T X 0
3 2 kT +T/2 X, T/2
4 1 K12 X 1Y
p
5 3 KT +T/2 + + Xy, 0
6 2 (k+1)T - X, T/2
(k+1)T T/2
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Since two types of transitions take place in the system, we refer to this as
Hybrid Simulation (Subroutine HSIMK). Figure 38 shows its flow chart. .
Subroutine STAMK calls HSIMK for each transition point ISQ and computes

the incremental transitions (A F, AG, H, E) and the total transitions (F, G,

H, E) as described in the previous section, The program documentations of
HSIMK and STAMK are given in AFFDL-TR=-73-119, Volume II. For this
example, we can carry out the indicated transitions with paper and pencil,

This yields the digital model of the two-rate system as follows:

. K __r_<2'_r (1-e'T/2) |52'_r 1 +e‘T/2) (258)
F i -(1-e‘T) | e L
(T
G(T) = (259)
| (1T
H = (1,00 E=1 -1 (260)

=i 0
Figure 39 shows computer results (model by software) for K=0,5and T = 1
second. They agree with the analytical results computed from Equations
(258), (259) and (260).
The transfer function of the two-rate system is given by

G(z) = H(zI-F) lG+E (261)

Carrying out the indicated multiplications yields

o

The poles and zeroes of this transfer function for K = 0,5 and T = 1 second
agree with the poles and zeros obtained by software (POZK), Note that
(see Figure 37) using four transitions (ISQ = 1, 2, 3, 4) and replacing T /2

by T yields the single-rate system. For this case, the analytical model is ;
obtained as E
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SET TRAING TABLE 4

READ PLANT AND
CONTROLLER DATA

N

G0 10 (4,3,2,1,3,2,1)!9

1r 2 34 ay

UPDATE MEMORY
STATE

UPDATE PLANT DATA PDATE CONTROLLER DATA UPDATE Hun.D STATE
Fa(Ti), GKTH, Fe(TH), Ge(TD), +
Hp(TD), Ep(Ti) c(Ti), Ec(Ti) LNER at @i

l l m LN

UPGATE PLANT STATE PDATE CONTROLLER STAT

+o
'D - prp i Gpup l: = ch + GC“C

[ ' .

‘ L COMPUTE INTERNAL VARIABLES

COMPUTE OUTPUT

’»um

RETURN

Figure 38. HSIMK Flow Chart
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QUADRUPLE OVER ONE PROGRAM PER]IOD

M016327Fe09 T T T T T Tt e e e ——

FP(TP = .60000E +00)

1=COLUMN
«1000000€+01

GP(TP = .50000E +00)

1=COLUMN
+2500000€+00

HP(TP = .5CO00E+00)

1-COLUMN
+1000000€+01

EP(TP = .50000E+00)

°l’COLUHN

MATRIX

MATRIX

1=-R0W

NATRIX

1=ROW

MATRIX

1=-ROw

FC(TC = .50000E+00)

1=COLUMN
+6065307€400

GC(TC - .50000€ +00)
1=COLUMN
«J934693E400

JHC(TC = 50000E+00)

1=COLUMN
«1000000C+01

EC(TC = ,80000E+00)

ol-COLUNN

39. Model by Software for K = 0,5, T = 1 second

MATRIX F (T = 1,0000)
MATRIX
} =COLUMN 2-COLUMN
1=R0OW <9016327E+00
2=R0W =.6321206E+00 «JOGTBTIE 00
1-ROW
MATRIX G (T = 1.0000)
MATRIX
1=COLUMN
1=ROW +9836734E-01
2=-ROW «6321206E+00 1-ROW
MATRIX M (T = 1.0000) MATRIX
1=COLUMN 2=COLUMN
1=ROW -,10000008+01 O, 1=ROW
MATRIX E (T = 1,0000) MATRIX
1 =COLUMN
1-R0W +1000000E.01 1=-ROW
Figure
1 T
-(l-e ) | e
H = [-1, 0], E=1

0

L)

(263)

(264)

For T =1 sec, and K = 0,5 computed results agree with this analvtical

model,

The transfer function for the single-rate model is obtained from

G(z) = H(zl - F)'1 G,
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and is given by:

22 - a1+ e-T)z +e T

jT) z + e"r+ KT(1-e

G,(z) =
1 zT- (1+e

AN (265)
)

Again, the polen and zeros of this analytical result and the computer result
agree very well,

IR T TR T O

Analytical results are hard to obtain for large systems, if not impossible,
But the software approach does not suffer from this dimensionality problem.
Incidentally, this example shows that Go(z) is more stable than G;(z). The

two-rate system in this example can tolerate a 45 percent greater change in
loop gain than can the single-rate system without becoming unstable.

MATHEMATICAL MODELING FOR WORD LENGTH EFFECTS

Computational errors are introduced within the digital controller due to :
(1) truncation of filter coefficients, (2) quantization of input data, and i
(3) rounding-off the results of multiplications, In the following we first 1
4 develop the data truncation model, Subsequently, we consider the determination
1 of the output noise for specified word length, and the interaction of this noise ?
1 with the scaling of the control laws when fixed point arithmetic is used,

TN Y

We first develop a scaling model and subsequently a digital controller noise
model representing atithmetic with finite word length., Finally, we present a E
] method for computing output noise of the digital controller as functions of 3

b scaling and word length, The details of noise analysis with fixed=point
arithmetic i8 presented in Appendix B.

Data Truncatjon Model

™~

The controller data (F,, G..H..E_.) are truncated or rounded to a prescribed ~

number of bits to investigate the effects of finite data word length on controller a;
performance, The original data (full bits) are first scaled for fractional . 3
machine representation; that is, each entry in data is expressed as

d =m 2P (266)

s

where
m = mantissa of data, 1/2 €sm< 1

p = exponent of data
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Subsequently, the mantissa m is converted to a binary number and truncated
to a specified number of bits, Finally, the truncated data is converted to
decimal representation for performance study, Subroutine CTRUNK in the
DIGIKON system performs the data truncation, It is fully documented in
AFFDL-TR-73-119 Volume 1,

Digital Controller Scaling Model (Dynamic Range Model)

When fixed-point arithmetic is used to evaluate the control equations in a
fractional machine, computations must be scaled so that every computed
number satisfies |s|<1. For safety on overflow and to avoid very detailed
analysis, scaling is selected so that |s| <<1, However, to maximize the
signal-to-digital noise ratio, one must select scaling 8o that | s | is as large
as possible, subject to dynamic range constraints and transfer function
invariance,

To accomplish this, we develop an Arithmetic Response Matrix, as presented
below,

Structure of the Digital Controller -~ The structure of the digital controller
is assumed to be in the following generic form:

x,' = Fx +Gu, (267)

r. =Hx +Eu, (268)
where

X, = state of controller (xx+ updated state)

u, = input to controller

r, = output from controller

and (Fc, G o’ Hc. Ec) are the controller matrix quadruples,

Form of Scaling_

We divide the scaling of control laws into two groups, (a) scaling of variables
(such as input, state and output) and (b) scaling of controller data (Fc, G.»
H., E c.)' In the following we first present the scaling of variables and sub-

sei6Hil¥ the data,
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=S X 269
r x, = 5%, (269)
‘ =Su 270
P T (270)
~
=ST 271
re = ST (271)
i where
Sx = Scaling matrix for controller state X,
i S ) Scaling matrix for controller input u,
Sr = Scaling matrix for controller output r c
{ and
\ ic' Ec. Fc are the scaled variables

Substituting Equations (269), (270) and (271) into (267) and (268) yields the
scaled equations

i A S

-+ A ‘AN -

X, = chc +chc (272) |
' ¥ <HX +B7 (273) :
e ° chc * Ecuc
: where . 3
f A -1
1 F, =S5, F.S, (274)
RS |
r G, =8y G5, (275)
f: ~ _ _l
Hc = Sr Hch (276)
! N |
| E, =S~ ES, (277) f

Form of Scaling for Controller Data (F,, G,, H,, E.) == The scaling of

variables as explained above transforms the original data into the form given
by Equations (274) through (277), This data should now be scaled so that
every element in the data is less than one in magnitude, but as large as possible,
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The simplest form of data scaling is as follows:

E Consider Equation (272), We find the maximum element in the ith row of the
E ' (F|G) pair for i=1, ... n Let his be s(i). Next we determine a uaique the
':

exponent p(i) such that 2P(i) <s(i) < 2P(i). Then construct a scaling matrix
S having 2P(1) as its elements. Using this scaling matrix we write Equation

(272) as
) it a
¥t . s{(s‘l X+ (s‘lc)i] (278)
1 or
xt - SFx+3 1 (279)

Figure 40 shows the block diagram of this implementation.

_|M|
v

'

Figure 40. Control Law with a Single Scale Factor
Scaling Constraints

The first constraint is the invariance of "transfer characteristics"
to output, It can easily

this property,

from input ‘
be shown that the structure given in Figure 41 has :
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Figure 41. Scaled Control Equations

The second scaling constraint is called the dynamic range constraint to
prevent the ""overflow, "' This manifests itself ic the following subconstraints:
Combining Fquations (272) and (273) into the follow:ng form

el 4 .
x. - % \ . ]
v=Fw where v =(—-" ‘and w&(-c)‘- ) (280) ]
r u_ 3
c | c/. 4
we write
° Magnitude constraint:
|Vi,<1, ]wilq i=1,2,... (281) i
° Product constraint in the form of j
T. % |<1 282 1
ij 3 (282) §
for all i, j ;
b
° Partial sum constraint in the form of ]
N s
giN = Tij ".ﬁ <1 N=23,... (283) :
i= 2 &y . {
i=1 g
3
3
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§ Approach to Determining Scaling Matrices -- To determine the scaling

f matrices satislying these dynamic range constraints, we define the "arithmetic

i response matrix' (dynamic range matrix) having the above products and

partial sums (in unscaled form) as its elements, The time history of this
arithmetic response matrix is then evaluated for specific inputs (step, ramp,
sinusoidal, stochastic, etc.) using simulation software TRESPK (Figures 42 and
43).

STEADY-
STATE -»
VALUE |

f..w, (t)
ij
] » (t)

Figure 42, Arithmetic Response Matrix Time History

DISTURBANCE
: ARITHMETIC | R®
» 1 ceNeraToR [ O —* ‘RespoNsE  [— ——

s T e St

INPUT
—®  SIGNAL ——0

p E
GENERATOR CONTROLLER
f
P r mdias K -‘IPLMT

Figure 43. Block Diagram for Arithmetic Response Matrix Generation
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Scaling matrices are then selected so that every element of the arithmetic
response matrix is less than one, Subsequently the scaled matrix quadruples
are computed using Equations (272) and (273) and the controller software

is prepared implementing the equations shown in Figure 41,

Input Considerations for Arithmetic Response -- Although step, ramp and
sinusoidal inputs (laboratory inputs) are used to design and test the behaviour
of the controlled system, they are not too realistic for developing system
response under the actual flying conditions, For this reason we chose
stochastic models for generating inputs to the system,

We assume that the pilot signal is a stochastic signal with a specified rms
value and bandwidth (signal generating filter), Disturbance inputs (gusts) are
modeled (gust filter) similarly. The variance (¢2) and the 3¢ value of the
arithmetic response matrix are then computed using COVK. It is known that
the unscaled random variables (elements of the arithmetic response matrix)
will be within this range with 99, 7 percent probability (Figure 44),

-31;!”

Figure 44. Bounds of Arithmetic Response rij(t)

We use the 30 value of the arithmetic response covariance matrix as a bound
for computing the scaling matrices Sx, Su and Sr‘

Digital Controller Noise Model

There are four points of consideration in the control law software which
determine the level and character of the round off noise for a given signal:

® The number of digits (bits) used to represent the data within the

control law (i.e., F¢, G¢, He, Ec) and the input, output and state
(i, e., Uy, Tos xc)
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® The mode of arithmetic employed (that is fixed point or floating
point), and :

;,» ¢ The type of arithmetic (2's complement, etc.)
® The structure of the'control law,

Figure 45 shows the noise model of one arithmetic cell in the evaluation of
the control law: v = F w

where the partial sum 8(i, j) satisfies

8(i,§) = 8(i,j-1 + p(i, j) (284)

and

ek e et o i

P, j) = Tij w(j) (285)

The statistical properties of np(i,j), ep (i, j) and es(i,j) depend upon the word

length as well as the number system used in the computer and rounding or -« ]
truncation of the lower part of the product. '

L | W

i N T

il

8(i,j-1)

Figure 45. Noise Model for One Arithmetic Cell
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The noise analysis with floating-point arithmetic involves three steps. First,
one computes the noise-free-response (computation with very long word
lengtn) using the external signal inputs, Subsequently, the equivalent floating -

point noise inputs are computed as indicated above, Finally these are propa-
gated using subroutine COVK,

Ll i

e ML
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SECTION IV
SYSTEM PERFORMANCE MODELING IN STATE SPACE

1 . Performance evaluation algorithms which are operational in Honeywell are

1 - briefly presented below. Five performance measures are considered: (1)
poles and zeros, (2) frequency response, (3) RMS response to turbulence and
roundoff noise, (4) power-content analysis, and (5) time response.

MODELING FOR POLES AND ZEROS (POZK)

: Consider the state equations describing the response of the ith output to the
1 jth input,
" x = Ax+B,U, (206)
y; = Cx + Dij Uj (297)
Transformation of this with zero initial conditions yields

(sI-A) X(8) = B Uj (s) (288)

Uj (s) (289)

]
Y,(s) = C,X(s) + D,

X

This set can be put in the following form:

P(s) 2(s) = qu (s) (290)
where
£(s) = col [Yi(s)l X(s)] (291) ‘
. 3
q(8) = col (D; | B,) (292)
an

d
I l -C,
- i

The coefficient matrix P(s) is called the system matrix.




Using the Cramer's rule, we can write

Di -Ci )
det
Yi(s) B J i sI-A

o i} _ _N(s
H, () = U,®) det P(s) D?s) (264)

This is the transfer function from the jth input to the it

h input.

A complex number s, is called the zero of H (s), if

j
N(s,) = 0, D(s,) # 0 (295)

Similarly, s, is called the pole of Hi (s) if

k j
D(sk) =0 N(Sk) # 0. (296)
Clearly,
det P(s) = det (sI-A) = 0, (297)

so the eigén values of A are the poles. Obtaining the zeros is more difficult.
The numerator in Equation (294) can be written as

N(s) = det (A0 + AIS). (298)
where A1 is not necessarily of full rank.

For this reason, the numerator matrix is reduced to the following form:

Kol (3]
0[ A0+A

»

N(s) = det (

s
1
where A1 is of full rank, and A0 is an upper triangular matrix.

We can now write 3
N(s) = K det (sI-Az),
where

K = «det A0 detA1

_ -1
Az - A1 AO

g TR
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Therefore, the eigen values of Az are the zeros of the transfer HU(B)'

; The subroutine which implements this procedure is called POZK,

To increase the accuracy on the computed poles and zeros of a given matrix
quadruple (A, B, C, D), the Newton-Raphson correction scheme may be used.
Briefly, if s is the computed value of a pole or of a zero, then its improved
value 8 is obtained from

f (8)
8=8-GF = (299) ‘E
s (8) %

4 The expressions for the function f(sk) and its derivative % (sk) are as follows:

1 Function and ) Expressions for Zeros of
f , Its Derivative | LxPressions for Poles ij Transfer
_ e
b ) A=l
f f(sk) det(skI-A) Ci(BkI-A) Bj + Dij
e (g,) tr{Adj(s, I-A)} -C,(s,1-A)"%B
ds ‘Bx k 18k 3

RESPONSE MODELING FOR REAL AND COMPLEX INPUTS

In digital control systems, some variables undergo rapid changes in real i
time, some variables are defined only at discrete time points, &nd some ]
variables, e.g., pitch rate and angle of attack, undergo continvous transi-

tions in real time. In this type of situation, what do we mean hv "frequency

response?''

Here we take the engineering point of view that we apply sinusoidal input
signals to the system and measure the output under this excitation. That is,
we are looking at amplitude and phase relations between continuous input/
output variables. Using this point of view, we discuss in the sequel a mathe-
matical model '""complex system function'" which yields the amplitude and
phase relations as a function of the input frequency for analog systems. Then
we present the extension of this notion to systems with digital as well as {
analog (hybrid) elements. {
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Development of Complex Response Model

Consider a linear time-invariant continuous system described by
x = Ax + Bu (300)
y = Cx + Du (301)

If this system is stable, then the steady-state response to a complex
periodic input

jwt

u=e (302)
can be expressed in the following form:

x(t) = H_(juel®* (303)

vt = HGuel"* (304)

Here Hﬁ(jw) and Hy(ju) are called the "complex system functions" correspond-
ing to the state and the output variables of the system. The variation (ampli-
tude and phase) of Hy(ju) and Hy(jw) with respect to w is called "the frequency
response’ of the system state gnd output, respectively.

Using the definition given by Equation (303) and the description of system
given by Equations (300) and (301), we can compute the complex system
function H{(jw) as follows. Differentiating Equation (303) with respect to t
yields

% = Hiju) ju el (305)
Substituting this into Equation (300) and solving for H)éjw) one obtains

H (ju) = GoI- A1 B (306)
Making use of Equations (302), (303), (304), and (306) yields

H(ju) = CjwI-A) 1 B +D (307)

One can find in the literature more elegant ways of deriving Equations (306)
and (307). However, the concept of ''complex response' introduced in
Equation (303) will be of great help to us for extending the frequency response
notion to digital control systems.

Digital control systems are essentially time-varying systems due to sampling
operations which take place in real time. In addition, most often, the

sampling operations are designed to be periodic in time, which a finite program
period, Tp. Thus, the physical equations which define the evolution of
response have periodic time-varying coefficients.
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Now we shall define the steady-state response of a digital control system to a
complex input as follows {see Equation (303)]:

jwt

x(t) = Hx(jw. t) e (308)

where because of the periodicity of the complex system function
Hx(ju), kTp) = I.lx [jw) (k + 1) Tp]. k = 0; 1. e s (309)

Here we see that the magnitude and phase of the complex system function
depends not only on the input frequency, w, but also on the time of observa-
tion within the sampling period. Usually the times of observation are taken
to be the sampling interval points, kTp.
Now with this restriction we find in the sequel the complex system response
and corresponding frequency response for digital control systems.

By definition:

x(KT) = H, (ju, kT) eJ@<T (310)

x{(k + DT] = H_[jw, G+ 1r]edo DT (311)
and

H [ju, (k+1DT] =H (ju, kKT), k=0, L.. (312)

On the other hand, the description of system state at the sample points is
given by

x[(k + 1)T] = Fx(kT) + G u(kT) (313)
where F and G are obtained by taking into considerations all transitions within

the interval. Substituting Equations (310) and (311) into (313) and making use
of (312) we oktain the following relation:

H (Gu, 0el*® DT - gy (g, 0)el0kT 4+ G J0kT (314)
Simplifying this we cbtain
H, G, 0) = *T1- )G (315)

This is the compiex system function.
Its magnitude and gain constitute the digital system frequency response

observed at the sampling points. For systems with high sample rates, the
time variation of the amplitude and phase response for each fixed input
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frequency becomes small, For slowly sampled systems, the intersample
"phase swing'' may be quite large (in the order of 10 deg). In this case, the
performance measure ''phase margin'' needs proper definition (i.e., instan-
taneous, max, min, average, rms, etc.). 4

Complex Response Model for Multirate Systems

When more than one update involving the input occurs within the sampling
program period, the complex response model given in Equation (315) must
be modified as described below. Figure 46 shows the input samples which
are used in the control law computation of a digital control system. In this
case, the overall system state, x(t), at sample points k =0, 1, .. is
described by a difference equation in the following form:

x[(k+1)T ] =F x(kT) +Gou(kT) +G1u(kT + 71) tea. +Gmu(kT + 'rm)
(316)
where F, Go, Gy ... G, are composite matrices which are obtained by

tracing the response under the influence of these inputs over one program
period.

ulh INPUT

Figure 46. Multiple Input Samples in a Program Period
Now defining the complex system function as before
x(kT) = H(jw, 0) u(kT) (317)
where u(kT) is the sample value from the continuous input

uft) = eJut (318)




and making uase of Equations (317) and (318) in (316) yields
Hjw, 0) = T 1. F)"lg (319)
where
JwTy Jwt
G = [Go +Ge t...G e ] (320)
This shows that for the frequency response of multirate digital control
systems, Equation (320) must be evaluated as well as Equation (319).

The General Frequency Response Software (FREQK) '

To determirie the effects of sampling time on system frequency response
(phase margin, gain margin), the couplex system functions defined by

Equations (306) and (315) or their equivalents, as discussed below, are imple-
mented in program FREQK.

Two types of data inputs are considered: 1) continuous quadruple (A, B, C,
D), and 2) discrete quadruple (F, G, H, E).

Four types of frequency response evaluations are considered. They are
identified as s, d, w, and r frequency reponses as shown in Figure 47, For

all types of frequency responses the transfer function is in the following
generic form:

H(jw) = C[(£1-A) + in1]" 1B + D (321)

In Equation (321), (A, B, C, D) matrices correspond to continuous or dis-
crete system matrix quadruples. They are obtained from the simulation
equation as described in Section III. The variables £ and n depend upon the
type of frequency response evaluation. Their functional relationships are
given in Table 9, The complex matrix given by Equation (321) is evaluated
by using the complex matrix inversion subroutine.

For a given range of frequency (number of decades), the magnitude of the
elements of H(jw) are computed in units of db and phase angles in units of deg.
These values are stored on permanent file for subsequent plotting. A simple

plotting routine is used to see the trends in the response. Accurate plottings
can be made on the ""Calcomp'' plotter.
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For increased efficiency of computation, three options are provided to
evaluate (321). They are 1) direct evaluation via (321), 2) evaluation via
poles and zeros, and 3) evaluation via poles and pseudo-zeros.

The option of frequency response via poles and zeros requires the poles and
a set of zeros for specified input-output pairs. This data is normally avail-
able (on permanent file) when a system study is made. If not available

it should be generated using program POZK when this option is used.

The transfer function to be evaluated is in the following generic form:

By (L-z)

H({) =K +D (322)

TT_ (C'Pk)

where zy, 22 ... zm are the zeros or pseudo-zeros of a specified input
output pair, p1, p2 ... pp are the poles, and K is the gain. The transmission
term D is a computed quantity and its value is zero if zk} are the zeros.

The pseudo-zeros are computed within the program FREQK if thi: option is

used. In the following we present a brief analysis for the pseudo-zeros of
an input-output pair for a given system.,

Pseudo-Zeros of an Qutput/Input Pair

Figure 48 shows a block diagram of a system for an output/input pair

Tir Y :

Figure 48. Block Diagram of a System for ar. COutpul-Input iy ’ .;' |
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The transfer function for this pair is given by

Hij(a) = g—g—)s—) + dij (323)
where

ﬁij (8) = ¢; [adj (s1-A)]b, (324)
and

D(s) = det(sI-A) (325)

We note that Equation (325) can accurately be evaluated. The direct evalua-

tion of (324) should be avoided for large systems due to numerical problems.
Now Equation (323) can be written as

[ﬁij(s) + D(s)]
H,((8) = —5m +(dy - 1) (326)

Observe that the numerator term in Equation (326) is the characteristic

equation of the same system when the loop indicated by the dotted line in
Figure 49 is closed. Thus

N(s) = [&ij(s) + D(s)] = det[sI - (A - bye,)] (327)

Hence (326) can be written as

det [s] - (A-bjci)]

or
i " (S-E'k)
Hij(S) = TTETIJ + (dij -1) (329)

The zeros of N(s) are called the pseudo zeros of the r,, ujpair. In
summary, when the frequency response is evaluated via the pseudo zeros and
poles, the poles and the pseudo zeros defined by Equations (325) and (327)

are evaluated first. Subsequently, Equation (329) is used for computing the
frequency response.

L

PP R U AT RRVETIIC R o




Demonstration Examgle for FREQK

A validation test was carried out on Subroutine FREQK using a third order
discrete time system desaribed by

x(k+1)
y(k)

where the system matrix quadrupled (F, G, H, E) are given as

Fx(k) + G u(k)

Hx(k) + E u(k) (330)

0 1 0 0
F = 0 0 1 » G=| 0 (331)
0.498047 -1.88574 2. 37988 C.4
H= (-0.379882 056152 -0, 18359, E= 0.4
The sampling rate for this system is assumed to be
fs = 25 Hz or
wgy = 157 rad/sec (332)

Figure 49 shows a subroutine which inputs the above data into the DIGIKON
system. Figure 50 shows the data image written on permanent file, Figure
51 gives the poles and zeros corresponding to this quadruple,

The corresponding transfer function is obtained as

1+b z-1+bz-2+b 2”3 zs+bzz+bz+b
_ 1 2 3 _ 1 3
H(Z) = _1 _2 _3 = K 3 2 (333)
1 +alz +a2z +a3z z +a1z +azz + a3
where
a1 = -2.37988 b1 = -2,56347
a2 = 1.88574 b2 = 2,4472¢6
ag = -0.498047 b3 = -0. 877929
K = 0.4
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TMAKF CNRC AN FIYy Vi, 0=P3gg ners) 12751/

PRNGRAM TMAKF(lN’Jronurpur.nnTA.TADrR:,NDur.tnb;u

INATA)

NDIMENS TNy F(101)05(10l)oﬂ(low)or(lnI)oﬂADK(?'

NTAENSTON THEAN(20)

LOCATF=4au~ry

INSFOTz4u]vsF

MAWK (1) zarHesgs

MARK (P)euMa gy

CALL 7A°’('N§7°Toﬂﬂ9<ol)

MNX=1

NR=)

Nli=)

F(l.l)zn,

r(l.?):l.

Flled)=z0,

Fl2¢1)zn,

F(2e2)zn,

Ft2en1z),

Flla))z,49ungy

Flle2)z=},9R574

F(3e) =22, 37048

Gllsl)=0,

G(’ol):o.

63el)=,4

Hlls}}==_,379aR7

H{le2)= 515>
Hile3)z=_]19150

Fllel)=z, g

T=z,0na

capL “DQQ(CtNx-NKvVlcN‘OTlQHF )
CALL "Dpﬁ(ﬂ9]|]o3'|¢TtQHﬂ )
CALL MDHC(-A.I;‘!.].}.T-IMH )
CALL "Dpﬁ(‘ololololnfobe )
YFAN(S4 100 [HFAD

FOOMAT (PnA4)

cagL TAPF('NSEQT014F00~|)
worITE (1) T NXeNRoY Y,
1 (IF(Ich01=loV:)oJ=lvVX)-
? ((G(I.Jlo':loNlloJ=l0VU)o
1‘““(]' “nl:l-Np'oJ=||~llo
allf(l-l).l:l.ND).J=|.N4)
CALL fADf(vNSFDY.wdD<.|)
STnp

FNN

Figure 49, Quadruple Input Program
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Q7100000
DIGITAL MoDe

——

__MATRIX F (Tz .40000F-01)

' -cOLUMN 2=COLUMN

3-COLUMN
1=-ROW 0. 1.0000000€E+00 o,
© 2=ROW 0. 0. 1.0000000F+00
3-ROwW 4,9804700F-0] =1.RRST7400E+00 ?¢3798800F+0n
s |
MATRIX 6 (T= .40000E-01)
' =COLUMN
T T-Row o,
Z-ROW Oo
3=-ROW 4,0000000F-01

_ MATRIX M (T= ,40000F-01)

-

1=COLUMN 2-COLUMN 3-COLUMN
1-ROW  -3,79R8200E-01 5.6152000€-0] =1.R359000F=~0]

‘MATRIX E J(T= ,40000E-0))

— . 1=COLUMN
1=ROW  4,0000000c-0i

Figure 50, Quadruple Input Image
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WMAX = « 9812418499
7=3_ANF
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Figure 51, Poles and Zeros
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105

o




T

e

3

F1200000 « THANSFNRY (/)
LT OF Bu (PuARE) VS, DWFQA
QUTSUT 1/INSUT )

SANBLE TiwFe  4,%0000€-07

149, =150, =120, =90, -60., -)0. 0. 30. od, s0. 120, 190,

—

FREQUENCY ResPONgE

[emcemteccentoncatsouacatomscnsecncssnantatnossatranantsmenntensentnonans]

ALLIEII TS | 1e
«001e-nt te
1e
FLLESTLY] 1e
N1 XP] 1 e
LI LR te
R LY I 1e
PLLALZYS | t e
NLLELTTETR | 1 e
1 o
' -
1 o
1 .
1 .
1 .
1 .
1 .
H .
1 .
ecscnemen .- 1 L2
1 .
1 .
R LIILRR | 1 Q
LALTITN | 1 O
RLILALTER | 1 d
' .
1 ]
] .
l L]
1 .
' .
1 e
1 e
1e
.
1
* 1
9] 1
9, 1
e . . H
. 1
. !
. 1
Q 1
. 1
9 !
O 1
. 1
. 1
1
1 .
1 .
1 .
1 .
1 .
1 .
] .
] .
99 annet f e
1,008 -1 - Te=8 &
1 e
1 e
1 e
1e -
JoTROvomu=] 1
1.998-.1 T e
2,26Mecnant 1e
2,510--=1 1o .
2,820 ccne] 1*
b3 LLIEEY 1e -
3.550- 1 154
1.980---1 1®
4,6A8=ccan ! 1e
BN 0eun] e
8828 ccnax] te
X3 2 LITT 1e W
T.0A0weu=] L}
T,.964%-x] L]
A,9)Seemun] L

=180, =150, =120, <~90. -60. <30. o, 3. »0, 9. 120. 190,

Figure 53. Plot of Phase versus «w

106

—-4'--1—-.——-4-._..—.,‘——-J-——-———————-—————-————.—--—-——--—-.--.————-.-.—-.——————————-—-




e TR Tt T e, Iy

The w-frequency response is plotted as shown in Figures 52 and 53 using
program FREQK with the quadruple (F, G, H, E), The results check very
closely with the exsiting frequency plots obtained by conventional means
using Equation (333). The example given here is for a single-input, single-
output system. As presented above, the Subroutine FREQK is developed for
multiple-input and multiple-output systems.

RMS RESPONSE. MODEL FOR SYSTEMS WITH CONTINUOUS AND DIGITAL
NOISE INPUTS (COVK)

This model is used to determine RMS response as a function of sample time
and word length due to continuous gust inputs occurring in the plant as well as
discrete roundoff noise inputs occurring in the digital controller at sample
intervals.

First we treat the subsystem RMS responses, namely plant and controller
alone, and subsequently the overall 8ystem RMS response for the continuous
case (T = 0) and for the digital case (T #£0),

RMS Response of Plant to Continuous Stationary Inputs

Consider a plant characterized by the quadruple (* ., G,, H » Ep). Input
L 2 TP Ypr Tp
to the plants consists of two parts:

up = col(upl;j “p2) (334)
where

up1 = control input to plant

up2 = disturbance input to plant

Figure 54 shows the plant block with continuous as well as sampled output,

— o THKT)

Uy =n® ———f PLANT r -

uplil} w Ep, Cp, Dp}

Figure 54. Plant Block
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The state of the plant evolved as follows

. = %
xp Apxp pl upl p2 up2 (335)

Assuming a piecewise constant control input and a stochastic disturbance
input (See Figure 55),

B +B

upl\t) = upl(kT) kT <t < (k+1)T (336)
upa(t) = 0 (1) for all t

The response is given by:

- - - t _(t-s)
x(t) = Fp(t kT)x(kT)+Gp1(t kT)upl(kT)+ 1{'1' e sz n p(s) d(s337)

Figure 55. Input Functions to Plant

When n, is a white noise, the covariance response due to this input alone is
given b;
X(t)= Fo(t-kT) X(kT) Fp' (t-kT) + AL (338)
where
(t-8)A (t-8)A /
= rt - p / p
V (t) =
plth=[" e B,W.B, e ds (339)
kT
with

kT < { < (k+1)T
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w o= |9 (340)
p ag
g

For the stationary inputs Wp, is a constant matrix. In this case a change of
independent variubles simplifies the integral defined by (339).

TR T I VR R A YT

| Substituting
. E=t-s (341)
' in Equation (339) yields
- p(t-kT) ZA ) A
B WB 42
E AU pWpBy € de (342)
E o
i At sample points we obtain
E’ - /
: xk+1- = F(T)Xk F°(T) + Vp(T) (343)
' where
/
T 8A LA
T) = B
V(T = [ pWpBp €5 de (344)

o
] and T = output sample time.

The set of Equations (343) and (344) define the discrete RMS response model
corresponding to continvous stochastic inputs. The intersample rms response
model is given by Equations (338) and (339). In the above development, no
approximation is involved. This means that the continuous covariance X(NT)
obtained by integrating

X=AX+xXA'+BWB' 45
: P P P PP (B
] over the interval
O<t <NT
is the ""same' as the sampled covarianée obtained by iterating Equation (343) for ;

k=0,1,2, ... N-1
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The benefit of this model is in the saving of computing time when the plant contains
high frequency dynamics. The accuracy requirement force the integration
step to be too small throughout the interval

0<t< NT

when Eguation (345) is used, whereas in the discrete model onky one
sample interval

0<t< T

small step size is needed. The steady-state values, when they exist, are
computed either from Equation (345) by substituting X = 0 and solving the
algebraic equation, or by setting Xk+1 = Xk in (243) and solving the resulting
equation. In both cases the result will be practically the same provided that
F(T) and V(T) have sufficiently small errors.

This finishes the RMS response model of the plant. In the following discussions
we obtain the RMS response model of the controller,

RMS Response Model for Digital Controllers with Discrete Inputs (Roundoff Noise)

The treatment of roundoff noise is given in Appendix B. Figure 56 shows the
roundoff noise model corresponding to a noise-free (ideal) controller quadruple
(F, G, H, E).

e & e e

Figure 56. Roundoff Noise Model for the Controller
In this figure,
gc = Input noise vector of size n, . X 1

Ne = Ouput noise vector of slze n,. x 1
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With the unity scaling, the rms noise input values are defined as
-~

é : . / - 2
,‘ o V. =E{g (k) g (K]} =|n o (346)

W_=E{n (k) n. (0} = |m, o (347)

where n, = number of nonzero elements in the i-th row of (Fcl G.)

m, = number of nonzero elements in the i-th row of (H cl E c)
ocz = variance of roundoff noise

The rms response of the controllers above is readily calculated from

- ]

Xy = F X Fe *V, (348)
_ /

R, =HXH +w,_ (349)

RMS Response Model for Overall System

Figure 57 shows the overall system model corresponding to effective plant
noise gp and round off noises €, and n, for some arbitrary system configuration.

In this model, "
I35 s Iy

E{g, & 1=V, Elg 8 '}=V, Eln n, }=W,

and they are given by Equations (344), (346), and (347) respectively, and 3

| E{,uk u/ } = U is the command input variance matrix.

Now the problem is the development of an overall sysiem covariance response
model with these multiple inputs. Let us define augmented input noise £ and
output noise n as follows:

£ = col(gp. g) n= col(n )




Figure 57. Overall System RMS Response Model

As previously done, the overall system equations can be written as follows:

+

x =Fx+ Gi%+ e (350)
r, =Hx +Euy+n (351)
u, = Pr,+ Qu (352)
r =Rr; +Su (353)

From Equations (351) and (352) we obtain
= -1 *
r;= (I, - EP)" [Hx +EQu+n] (354;
=3 -1
ui = (Iui - PEi) (P Hx +Qu+P nl (355)

Substituting this into Equation (350) yields the overall system model in the
form of

”
0

Fx + Gu“ + Ggg + G'ﬂn (356)

r Hx + Euu + Egg + Enn (357)

where (F, G , H, Eu) are the same as given by Equations (198) through (201)
in Section IIf' and

o . -1
G,=1I GT] = Gi(lui - PEi) P (358)

B} ] -1
E, =0 E, =R, - EP) (359)
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Reducing Equations (350) through (353) to (356) and (357) can also be done by
software. First, an augmented input vector is defined as

u = col(u, 8, n) = colly, gp. 8 Mo ) (360)

of size (ny + Nxp + Nye + npc) in the w-array of SIMK. Subsequently, noise
terms are added irto the subsystem dynamics in the simulation equations as follows:

= % 361

p+ prp Gpup gP (361)

: x, =Fx + G,u, + &, (362)

i r =Hx +Eu (363)
. P PP PP

r, = H e & Ecuc +ne (364)

. That is all one needs to obtain the noisy system discrete quadruple using
4 software (STAMK),

g Gust Response Ratio

If a continuous controller (i.e., T = 0) design is based on minimizing the rms
gust response, then a controller with sample time T # 0 will produce increased
rms response. We now define the rms response ratio as

Rli (T)

Yi = 20 log10 W (365)
where
Yi = Response ratio of the i-th output in db 7

R..(T) =Variance of the i-th output corresponding to a digital
controller with sample time T

Rii (0) =Variance of the i-th output with continuous controller

it il
ek i

This performance measuring stick can be used to select sample time when
allowable increase is specified.

The following example demonstrates the use of the gust response ratio perfor-
mance measure for sample time selection.
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Consider a plant-controller combination as shown in Figure 58.

e

CONTROLLER

+ y X
? G |

(P PLANT
+ ¥ + 1 X
. 5

Figure 58. Continuous Control System

Assume the controller is designed to create closed-loop poles of

The mear square value of the gust response is obtained from

/
AX + XA +W =0,

where

X=E{xx"} .

The solution is

2
X11 = og

- 2
X12 -og /2

2
X22 - O’g /2,

where ¢ gZ is the variance of the gust input.
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Now, suppose we want to replace this controller with a digital controller as
shown :in Figure 59,

R n
DIGITAL 9
CONTROLLER PLANT
+ + W+ X
7+ 1
2 \o—— K g E-_.o"’n'_. HOLD — P
T
-8T

Figure 59. Sampled-Data Control System

Three different design procedures will be considered:

1. Digitization of the continuous control law using the z-transform
without hold

2. Digitization using the Tustin method
3. Direct digital design (using the same pole location criteria)

Table 10 shows the plant and controller data as functions of sample time T,
Figure 60 shows the state diagram of the resulting digital control system.

{
o xpEtZl

Figure 60. State Diagram of the Sampled-Data System ‘
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Table 10. Plant and Controller Data as a Function of Sample Time T

3 Continuous Discrete
Data Data
¥
A -0 F :1
{ P P
i E ® ] ] N =
] BP K;:K=1 (.p KT
Q.
; C =1 x 1
1 P HP
: Dp « 0 Ep =0
k
Continuous I2:1tized Data
Data
t z-Transform 7
with Hol:i PIREEtTingtn Direct Digital Data 2
i s
t - z -7 - 1-T/2 3 -3
k Ac 1 Fc e Fc *1T/2 Fc - ”
B_:1 G e g - TieT2? G+ Kid-o) 8
' c c c c ) @
]
L E Cc=l Hc=l Hc=l . Hctl g
¢ ° . . =)
; :-S. D :0 E 0 B A(T/YeT/2) |E - K where: g
. & K« @71 - 2T-1) e0T cos T -e~20T 3
‘ T?
. 1T -2e"9T cop gL 1eT) ool :
(2T-1) - 2(T-1) 9" cos uT ~e 20T :
i o 1= 27T cop ot 1 20T 3
4 o t iw continuous pole location: g = 0.5 jj
W \672 E
3
]
i
A
:
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The state response at the sample-points are obtained from

; x, (k+1) (1=Te)| T [ x (0 Te_ At

3 P = l P s u(k) + |kT 'r]g('r) dr|.
Xc(k‘"l) ‘gc fc xc(k) gc 0 ﬁ
(370) '
For stationary gust input, the steady-state mean square response at sample
i points is obtained from ?
] X=FXF +V, (371) !
:
? where F is the transition matrix of the above equation and j
f V. o0

Vil & :] - (372)

fg 0 0

where Vg is the discrete equivalent of the continuous covariance W and is

f calculaté using Equation (373).

‘Alsc—);
[ , :
V. =AYV +V +W, V = 0, =V . ]
g p'g gAp g(o) Vg g(T) (373) 1
Since A, = 0, we obtain V_ = o "T. (374) 1
The analytical solution of Equation (371) for design procedure 1 is as foilows: !
2 . 3
X11 = PH(T) X11(°) (375) 1
2 -
where
g (1+f +g T)
P,,(T) = <S¢ (377)
22 9 gCT
(l-ﬂfc ). —5— (1+3fc+gcT)
1-f +g T (1+f +g TJT
= e ¢ c_°c
Pll(T) = (-———2 . ) i 7 . P22(T). (378)

117

T TR o P, bt Bt o
_— i G A R e b M il M b b i e el d e




] —

rhe solutions for design procedures 2 and 3 can also e obtatned,

Tae first component of the normalized gust response is given as

| . R, {T)
= %

where

=H, X H’

Rll 1 1 (380)

The X above is defined in Equation (371), and H, is the first row of the output
matrix H,

4

Equation (371) is solved using the data in Table 10 obtained by the three
different design procedures. The normalized response given by Equation (379)

is then evaluated for the plant output. Figure 61 shows Yp versus sample
time, T, for these procedures.

i S e 8t

, For an allowed iacrease of 1. 5 db "the Tustin controller requires T = 1/2-
1 J second sample time.

| e O P

AT 1 Z-TRANSFORMED CONTROLLER
Pl 2 TUSTIN TRANSFORMED CONTROLLER
NORMALIZF.D 3 DIRECT DIGITAL CONTROLLER
10 4 GUST RESPONSE
OF PLANT
9 4

T Y O T Tt

SAMPLE TIME T

SEC
0.03 0.050.07 0.2 0150.2 0.3 0405 0.7091 1.5 2 3 4

s i s

Figure 61. Design Procedures Trade
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Word-Length Roundoff Noise Relations

The following develeps a stochastic approach to the sample-rate-word-length
tradeoff problem. The "first-difference" algorithm is used here for the digi-
tization of analog system dynamics simply to demonstrate the approach,

Consider a continuous controller with dynamics described by

i=Acx+Bcu (381)

Let the sample time be T seconds. Substituting
x -Xx

. _ “k+l k
into (381) yields

X4y ° Fc(T)xk + Gc('I‘)uk (383)
where

FC(T) = (I+ ACT) (384)
and

GC(T)- = BcT (385)

Equation (382) is the "first-difference" algorithm. Using Appendix B, the
roundoff noise model is given by Figure 62,

Figure 62. Roundoff Noise Model of the Digitized Controller Dynamics




.
3
ic
1
3

Xp41 = Fc(T)xk * Ny (386)
where n w is the roundoff noise vector with the variance matrix given as

9=W,2
W(w) = =55~1 (387)

where w = word length,
The steady-state value of the mean-square error is given by

_ /
Xc = Fc(T)ch c(T) +W (388)

Substituting (384) into (388) yields the following matrix equation
/ / Wiw) .
chc + Acxc + Acch cT + T 0 (389)

This is the functional relation between the noise covariance, continuous
system dynamics, sample time, and word-length parameters.

As an example consider the following first order differential equation:

X=ax + bcu (390)
Let Xp4y © fcxk + 8.y, (391)

be its discrete representation. Let O be the roundg f noise variance in
the computation of the right-hand side"of (391) and 9 be the resulting
output noite variance,
The steady-state solution to Equation (°°9) exists when:

8,< 0 (392)
and

0< IacIT < 2 (393)

Then the use of Equation (389) yields
2

2 2 c’w "
-2|ac|+|a8,.,| T) o+ =0 (394)
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Defining the digital noise amplification factor as

2 1 (395)

g
= —
4 g
w

and solving Equation (394) for T yields

1 --\’ 1
T=-;- [1"' l'—ﬁ'] (396)
C N

This shows that for a fixed noise amplification level, the sample time is
inversely proportional to the pole location. Smaller pole locations require
higher sampling times (lower sampling rate).

Noting-that

-w\2
2 _(2°¥W)
o, =13 (397)

where w is the word length, another form of solution of Equation (394) is
given by

1

Ve S B (398)
o, 2V3 /T ‘2 | gl -a T

w = log2

This shows that for a given output noise level, lower sample times require
longer word lengths., The smaller the pole, the higher the required word
length, The third form of the solution of Equation (396) is given by

2 1

= (399)
X 92W (1o T (2[3;1 - aT)
C (o}

(0]

This indicates that in order to keep the digital output noise variance down,
word length and sample time must be increased. The smaller the pole location,
the more dominant its contribution is to the output digital noise.

POWER AND POWER SPECTRAL DENSITY MODELING FOR
FREQUENCY TRUNCATION (POWK)

For signals generated in physical systems, the power content of a signal in a
prescribed frequency band can be used to determine significant frequencies
of the signal in that band. This, in.turn, can be used to indicate how fast the
sampling rate should be 8o that the digital signal is transmitted through the
discrete channel without a significant loss of signal power. In this paragraph
we develop the power content model. In Section V this is applied to a simple
system.
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Figure 63 shows three major stochastic inputs to a control system:

e Signal 'input s(t)
e Gust input wg(t)
e Sensor noise input n(t)

These inputs are assumed to be generated by the corresponding filters having
independent white-noise inputs 'ﬂs, ﬂg. and N i shown in Figure 63.

i ' )
The total output spectral denslity is obtained from

LU 2
Sjw =% 'Hik(jui)l S, (w)

(400)

where

Sk(w) = power spectral density of input n,,
IHik(jw)l = magnitude of frequency response from kth input to ith

output, and

Si(w) = power spectral density of output y,

n; I"q

GUST
NOISE
FILTER FILTER

wglt)
SENSOR NoIsE  GUST
[ 4
r.-q[ PLANT
'C

CONTROLLER

- SIGNAL
s FILTER

Figure 63. Stochastic Inputs to a Control System

The signal (or noise) power lying in the band 0 < w < w, is obtained from

w
P(s) = [ 15w do. (401)
o
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The steady-state power level (mean-square value of signal) can be obtained
from

w
P_=tim [© 1 S(w) dw. (402)
88 m
wo"‘” (o]

Equation (401) shows the power content of the signal in the band 0 s w < w,,.
This can be used to determine the significan$ frequencies of the signal by
effectively (runcating the frequencies (theoreticzlly the frequencies go to in-
finity but practically they are insignificant beyond scre power settling fre-
quency). This fact is illustrated in Figure 64.

Figure 64, Power Spectral Density and Power as a Function of w _

The power level is said to be settled when it reaches p percent of its steady-
state value (for example when p is between 90 to 95 percent of its steady-
state value). The corresponding bandwidth is called the power settling fre-
quency or the settling bandwidth. (This is analogous to the 50 percent power
point for the regular bandwidth definition, )

To obtain the "settling bandwidth of a signal', normalized power is computed,
The normalization factor is the steady-state power level (mean-squared value)

of the signal. It is obtained by solving the following equation for continuous
signals:

X =0=AX + XA’ + BWB
, . p (403)

] Y =CXC +DWD,

where W is the disturbance covariance matrix.

For any given sampling frequency, the total average signal power of the
digital system is computed from

W
P == [® |8 (1|2 S du (404)
(l)s o
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where
S(w) = Spectral density of the digital input signal,

IH*(ej‘”t)l= Digital-frequency response amplitude from input to output,

W = Sampling frequency(rad/sec) and

P(w) = Average power content of digital output signal.

For digital signals, the following equation is solved for the steady-state
power density levels

X = FXF '+ GW G’
/ / (405)
Y = HXH' + EW dE . .
where Wgq = W/T.
Then the densities are integrated in the frequency domain until the powers reach
their settling levels,

Program POWK implementes this analysis. It is fully documented in Volume II
of this report. A demonstration example is given in Section V of this report
using a fourth-order system model.

TIME RESPONSE MODEL FOR DETERMINISTIC INPUTS (TRESPK)

The second order algorithm [8), given below, is used in integrating the
differential equations to get the states and responses to deterministic inputs

cw 20T (o _ .
Xea1 =M P B - %)

where AT is the integration step size,

The derivatives are either computed directly using the matrix quadruple
ABCD in

x = Ax + Bu

or are obtained from the simulation equations [see Equations (4) and (5)].
Since in this case x appears in both sides of these equations, the aged deriva-
tive x._1 is used to compute the current derivative Xieo

In the discrete case the states and responses are merely updated using the
digital quadruple FGHE in

xk+l = F xk + Guk

Ty Hxpp * Bupyy

These expressions are implemented in time response program TRESPK for
step inputs and fully documented in Volume II, Section VIII,
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SECTION V
COMPUTATIONAL REQUIREMENTS AND PARAMETRIC STUDY

This section documents a comprehensive study of digital flight control param-
eters., Aircraft flight condition, system bandwidth, sample-rate, and word
length are to be varied, and the relative influence on performance is to be
examined, The objective here is to define computation rate requirements for
a tactical fighter and the rate sensitivity to DFCS parameters,

The F-4 longitudinal control system presented in the fly-by-wire report
AFFDL-TR-71-20, Supplement 2, was selected for the parametric study,
which was carried out in two levels of system complexity, First, the F-4
longitudinal structural filter was investigated, Subsequently, the overall

F-4 longitudinal control system (open loop and closed loop) was studied, These
studies are summarized in that order,

The various topics discussed in this section are supported by numerous
figures, To preserve reader continuity, therefore, each topic will be presented
in its entirety and then followed by its supporting figures., However, there are

a few obvious exceptions to this format where small figures are presented within
the text,
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PARAMETRIC STUDY OF A STRUCTURAL FILTER IN THE F-4
LONGITUDINAL CONTROL SYSTEM

Parametric analysis by software was carried out to relate the poles and zeros
and the frequency response of a structural filter to the computational param-
eters--sample time, and the coefficient word length. The structural filter

is the same as that used in the F -4 longitudinal control system.

The following parameter set was used:
e Sample Time: 0,1/1000, 1/160, 1/80, 1/40, 1/20 sec
® Coefficient Word Length: 24, 16, 12, 8 bits

Figure 66 shows the transfer function, state diagram, and differential equa-
tions which describe the dynamics of the structural filter (which is also called
a notch filter), and Figure 67 shows the program listing describing the contin-
uous filter in Subroutine SINKC., Figures 68 and 69 show the sample-time
root locus in the image s-plane and z-plane of the notch filter based on the
pole-zero data for a 16-bit coefficient word length. The zeros are computed
for sampled-output/ sampled-input transfer. Figures 71 through 75 (presen-
ted following this discussion) show the filter quadruple and associated poles
and zeros for a 16-bit coefficient wordlength and sample times of 1/1000,
1/160, 1/80, 1/40, and 1/20 sec., respectively. Figure 70 with T =0, Full
Word is included for comparison. Figure 76 shows the effect of coefficient
word length on the quadruple data. For sample time T = 1/80 sec, 24- and
8-bit data are displayed. Figures 79 through 86 show the dependence of the
frequency response (gain va. omega, and phase vs. omega) to the sample
time parameter for a fixed word length. This dependence is exhibited for 16
bits of data and sample times of 1/160, 1/80, 1/40, and 1/20 seconds respec-
tively, using sampled and zero-order-held input and zero-order-hold output.
Figures 77 and 79 (T = 0, Full Bits) are shown for comparison purposes.

Figures 87 through 90 show the dependence of the frequency response (gain vs.
omega) to coefficient word length for fixed sample time. This dependence is
exhibited for a fixed sample time of 1/1000 sec., and word lengihs of 24, 16,

12 and 8 bits, respectively, using sampled and zero-order<hold input and . 1!
zero-order-hold output. Figure 91 shows the frequency response table. Fig-
ure 92 shows the loss of phase margin.

We note that in this part of the parameteric study, we used a subsystem ap-
proach (a short cut) to sample rate selection. In this approach, a critical
subsystem is chosen and isolated from the rest of the system. Subsequently
its variation (i.e., deterioration) from the ideal is investigated as a function
of sample time and word length. Maximum allowable variation determines
the computational parameters.

Figure 65 shows replacement of a continuous controller by a digital controller

in a feedback system between the terminals A and B. Within the controller,
an element which is most sensitive to sample rate is the structural filter.
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CONTROLLER
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A

F ‘

*
uC
DIGITAL
x CONTROLLER

Figure 65. Replacement of Continuous Controller with a Digital
Controller in a Feedback System

! The following conclusions can be drawn from analysis of the parametric studies:

® A coefficient word length of 16-bits ie sufficient to represent the
discrete notch fil*er dynamics (i.e., difference equations)

® The sample-time root locus in the image s-plane shows that the notch
frequency and damping is very sensitive to sample time. They are
both reduced by increased sample time. The complex poles of the
filter have the same trend. T

The roll-off filter bandwidth increases 30 percent when sample time
is increased from zerg to T = 1/80 sec. This shows that for sample
times greater than 1480 sec., poles and zeros must be prewarped
to maintain critical frequencies.

e Frequency response plots show the notch frequency shift to the lower
: frequencies as sample time is increased from zero. High frequen-

4 cies are sharply attenuated due to a zero introduced by the Tustin

4 algorithm at the half sampling frequency, and, due to the attenuation
r characteristics of a zero-order hold unit. This attenuation, how-

4 ever, is obtained with an excessive phase lag (approximately 90 deg

at half sample frequency) as shown in Figures 87 through 90,

e If the additional phase lag introduced by the digitization of the filter
and by the liold unit is to be constrained to some maximum value at
some critical frequency, then the sample rate can be chosen
accordingly. 3

e Figure 92 shows that at w = 10. 25 rad/sec (approximately the air- ':i
craft rigid body crossover frequency), a loss of 3 degrees in phase !
margin corresponds to sample time of T = 1/100 sec, "q
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(a) TRANSFER FUNCTION

. S ' 1w ) w, = 86
Ua (— +2 —n-)sn 1 vt 700
w w Ud = 84
n n
. > > gy = 0.6
f ) S gd S W = 120
—_—] 2 |—]S+lf{{—+ f
“d L\ 7.

{b) STATE DIAGRAM

el s andihet LR o

. r=
n--'l H '-—ﬂh(l)
L_d

DIFFERENTIAL EQUATIONS
X = g Y ()
Xc(2) = Xc(3)

. 2
Xc(3) = Wy YC(2)

n Wy 2
Yc(l) = X+ XC(Z) + 2 -u—n Xc(3) +(°—n) yc(z)
td
YC(Z) = U() - 2';,: Xc(3) - Xc(Z)

fl) = Xc(l)

I"igure 66. Notch Filter Simulation Diagram and Equations




Chmibie tos g G accs S

SUBROUTINE SIMKC ' .
mqa. i
€ vnxlo ORDER NOTCH FILTER DYNAMICS
C -
‘COMMON V(G1)YoW(T0) «NXINYoNR¢NUSINIT, ISQoNODEoF(“lolO)OTPSolFLl.oT
N XO0T13)y X(J)s Y(2)y ONTY
EUUlVKEEWCE TXDOTU1)e WIIY)e Y1) WUL))y TXT1)o WIB))o
A W(l)e W)
IF (INIT .NE, 0) GO TO 100

100 c°n71NuE
060 L

XTN-.OS
WU £ Ba, ]
T XID £ .6 4
w = 120.

_KDOT EQUATIONS i

M0

VIDY = WF 3 VII) %
TTTTTTVTRY = X(3) - ;
VI3) = WD * WD * Y(2) i

c
& Y EQUATIONS
c

T o=, VIGY = =XTT) ¢ XT2) « ((2, » XIN} 7 WN) ® X(3) o 1
- I TTWD ®* WD /7 TWN ® WN)) # YI(2)) ;
VIS) = U(l) = ((2, ® XID /7 WD) * X(3))= X(2) 1

c
=€ RESPONSE EQUATIONS
C L}
VIET = X(1) ]
T RETURN |
END

Figure 67. Notch Filter Simulation Program Listing
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Figure 68. Notch Filter Sample-Time Root Locus in the s-Plane
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